Generalized finite-differences solution of 3D elliptical problems involving Neumann boundary conditions
V. Pennati
Centre for Hydraulics and Structural Research — ENEL, via Ornato 90/14, 20162 Milano, Italy
Search for more papers by this authorS. Corti
Centre for Hydraulics and Structural Research — ENEL, via Ornato 90/14, 20162 Milano, Italy
Search for more papers by this authorV. Pennati
Centre for Hydraulics and Structural Research — ENEL, via Ornato 90/14, 20162 Milano, Italy
Search for more papers by this authorS. Corti
Centre for Hydraulics and Structural Research — ENEL, via Ornato 90/14, 20162 Milano, Italy
Search for more papers by this authorAbstract
A method is presented for the solution of elliptical problems defined on general-shape multiconnected three-dimensional domains approximated by means of polyhedra. The boundary conditions may be of the Neumann type. The differential operator and the normal derivative are discretized by generalized finite-difference (GFD) methods using an orthogonal non-uniform Cartesian grid. The convergence properties are analysed and the solutions of some Poisson and biharmonic problem are presented.
References
- 1
N. Perrone and
R. Kao.
‘A general finite difference method for arbitrary meshes’,
Comput. Struct.,
5, 45–58
(1975).
10.1016/0045-7949(75)90018-8 Google Scholar
- 2 W. H. Frey. ‘Flexible finite difference stencils from isoparametric finite elements’, Int. j. numer. methods eng. 11, 1653–1665 (1977).
- 3 T. Liszka and J. Orkisz. ‘The finite difference methods at arbitrary irregular grids and its application in applied mechanics’, Comput. Struct. 11, 83–95 (1980).
- 4 P. C. M. Lau. ‘Finite difference approximation for ordinary derivatives’, Int. j. numer. methods eng., 17, 663–678 (1981).
- 5 M. Reali, R. Rangogni and V. Pennati. ‘Compact analytic expression of two dimensional difference forms’, Int. j. numer. methods eng., 20, 121–130 (1984).
- 6 M. Reali, G. Dassie and V. Pennati. ‘ Direct general finite difference techniques for elliptic problems defined on bounded or unbounded two-dimensional domains’, In Numerical Methods in Transient and Coupled Problems, Wiley, 1986.
- 7 A. A. Tseng and S. X. Gu. ‘A finite difference scheme with arbitrary mesh systems for solving high-order partial differential equations’, Comput. Struct., 31, 319–328 (1989).
- 8 G. M. Cocchi and F. Cappello. ‘Convergence in elastic-static analysis of three-dimensional continue using the finite difference method with arbitrary grids’, Comput. Struct., 36, 389–400 (1990).
- 9
P. S. Jensen.
‘Finite difference techniques for variable grids’,
Comput. Struct.,
2, 17–29
(1972).
10.1016/0045-7949(72)90020-X Google Scholar
- 10 V. Pennati, L. De Biase and F. Feraudi. ‘A generalized finite difference solution of parabolic 3D problems on multiconnected regions’, Commun. appl. numer. methods, 8, 361–371 (1992).
- 11 S. Corti, L. De Biase and V. Pennati. ‘ A multistep 3D generalized difference technique’, In Numerical Methods for Thermal Problems, Pineridge Press, Swansea, 1989.
- 12 L. De Biase, V. Pennati and G. Ratti. ‘ An adaptive solution to parabolic problems defined on 3D multiconnected domains with automatic approximation of the boundaries’, In Numerical Grid Generation in CFD and Related Fields, North-Holland, Amsterdam, 1991.
- 13 V. Pennati and G. Ratti, ‘ Un metodo adattivo per la soluzione di problemi ellitici e parabolici definiti su domini 3D multiconnessi approssimati automaticamente mediante poliedri’ [An adaptive method for the solution of elliptical and parabolic problems defined on multiconnected 3D domains approximated automatically by means of polyhedra], Enel-Cris, Internal report, March 1991.
- 14 V. Pennati, L. De Biase and S. Faila. ‘ Solution of parabolic problems defined on 3D domains, with boundary conditions involving the normal derivative’, In Recent Advances in Heat Transfer, Elsevier, Amsterdam, 1992.
- 15 R. Wait, The Numerical Solution of Algebraic Equations, Wiley, 1979.
- 16 P. P. Silvester, H. A. Auda and G. D. Stone. ‘A memory economic frontwidth reduction algorithm’, Int. j. numer. methods eng., 20, 733–743 (1984).
- 17 G. Pedersen. ‘On the effects of irregular boundaries in finite difference models’, Int. j. numer. methods fluids, 6, 497–505 (1986).
- 18 J. Hauser, H. G. Paap, D. Eppel and A. Mueller. ‘Solution of shallow water equations for complex flow domains via boundary-fitted coordinates’, Int. j. numer. methods fluids, 5, 727–744 (1985).
- 19 J. F. Thompson, Z. U. A. Warsi and C. W. Mastin, Numerical Grid Generation, North-Holland, New York, 1985.
- 20 B. K. Soni. ‘ GENIE generation of computational geometry-grids for internal-external flow configurations’, In Num. Grid Generation in CFD, Pineridge Press, Swansea, 1988.
- 21 J. C. Strikwerda, Finite Difference Schemes and Partial Difference Equations, Wadsworth and Brooks/Cole, Pacific Grove, California, 1989.
- 22 G. D. Smith, Numerical Solution of Partial Difference Equations, Clarendon Press, Oxford, 1985.
- 23 J. Dow, M. S. Jones and S. A. Harwood. ‘A new approach to boundary modelling for finite difference applications in solid mechanics’, Int. j. numer. methods eng., 30, 99–113 (1990).
- 24 B. Hunt. ‘Finite difference approximation of boundary conditions along irregular boundaries’, Int. j. numer. methods eng., 12, 229–235 (1978).
- 25 S. R. K. Iyengar and R. Manohar. ‘High order difference methods for heat equation in polar cylindrical coordinates’, J. Comput. Phys., 77, 425–438 (1988).
- 26 B. J. Noye and R. J. Arnold. ‘Accurate finite difference appoximations for the Neumann condition on a curved boundary’, Appl. Math. Modelling, 14, 2–13 (1990).
- 27 M. Reali, R. Rangogni and V. Pennati, ‘ On the derivation of high order finite difference forms for general networks’, Enel-Cris, Internal report, May 1980.
- 28 V. Pennati and S. Failla, ‘ Soluzione di problemi parabolici ed ellittici definiti su domini 3D multiconnessi con condizioni al contorno di Neumann e di Dirichlet’ [Solution of parabolic and elliptical problems defined on multiconnected 3D domains with Neumann and Dirichlet boundary conditions], Enel-Cris, Internal report, March 1991.
- 29 F. Bettinali, A. Dusi, S. Failla and V. Pennati. ‘ A comparison between a FEM and GFDM in the solution of some temperature distribution problems’, In Numerical Methods in Thermal Problems, Pineridge Press, Swansea, 1991.
- 30 L. De Biase, F. Feraudi and V. Pennati. ‘ Temperature distribution in a polyhedrical body with internal heat generation and flux boundary conditions’, In Numerical methods in Thermal Problems, Pineridge Press, Swansea, 1991.
- 31 H. S. Carslaw and J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959.
- 32 G. M. Grandi and J. C. Ferreri. ‘On the solution of the conduction problems involving heat sources via boundary-fitted grids’, Commun. appl. numer. methods, 5, 1–6 (1989).
- 33 E. Isaacson and H. B. Keller, Analysis of Numerical Methods, Wiley, 1966.
- 34 L. De Biase and F. Frontini. ‘ A stochastic method for global optimization: its structure and numerical performance’, In Towards Global Optimization, Vol. 2, 1978, pp. 85–102.