Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birthdates, and morphological features
G. Alvarez-Bolado
Program in Neural, Informational, and Behavioral Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520
Search for more papers by this authorM. G. Rosenfeld
Eukaryotic Regulatory Biology Program, Howard Hughes Medical Institute, University of California, San Diego, and Department of Medicine, School of Medicine, La Jolla, California 92093-0648
Search for more papers by this authorCorresponding Author
L. W. Swanson
Program in Neural, Informational, and Behavioral Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520
Hedco Neuroscience Building, mc 2520, Department of Biological Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089–2520Search for more papers by this authorG. Alvarez-Bolado
Program in Neural, Informational, and Behavioral Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520
Search for more papers by this authorM. G. Rosenfeld
Eukaryotic Regulatory Biology Program, Howard Hughes Medical Institute, University of California, San Diego, and Department of Medicine, School of Medicine, La Jolla, California 92093-0648
Search for more papers by this authorCorresponding Author
L. W. Swanson
Program in Neural, Informational, and Behavioral Sciences and Department of Biological Sciences, University of Southern California, Los Angeles, California 90089-2520
Hedco Neuroscience Building, mc 2520, Department of Biological Sciences, University of Southern California, University Park Campus, Los Angeles, CA 90089–2520Search for more papers by this authorAbstract
In situ hybridization was used to map spatiotemporal expression patterns of the four known intronless POU-III transcription factor genes Brn-1, Brn-2, Brn-4, and Tst-1 in the developing rat forebrain vesicle, beginning on embryonic day 10. The results indicate that the proliferation layers (ventricular and subventricular) and mantle layer of the forebrain neural tube each display a strikingly unique pattern of regionalized POU-III expression. Within a particular region, or layer within a region, none to all four of the mRNAs may be detected, and during development a particular mRNA in a particular region displays one of five expression patterns, or a combination of these patterns, which may be described as conserved, lost, transient, acquired, or redeployed expression. In the developing brain as a whole, Brn-1 and Brn-2 early on display somewhat different spatial expression patterns that converge to essential identity in the adult, whereas Brn-4 expression is initially broad and becomes much more restricted in the adult, and Tst-1 expression expands greatly through development. Usually, though not always, expression patterns tend to correlate with major histological features in the forebrain (often internal or external sulci associated with proliferation zones), and little evidence for waves of expression moving through the whole forebrain over time was obtained. Thus, clear differences in hybridization intensity often are observed between the cerebral cortex, basal telencephalic nuclei, hypothalamus, ventral thalamus, dorsal thalamus, and pretectal region. In contrast, transverse bands of hybridization extending from the roof to the floor of the forebrain, corresponding to proposed neuromeres, were not observed with these probes. The results suggest that POU-III transcription factors help define specific regions in the early neuroepithelium as well as different cellular phenotypes in the ventricular, subventricular, and mantle layers of specific regions later in development. Thus, the functions of these regulatory proteins may be different in proliferating neuroepithelial cells, young neurons, and mature neurons and appear to be region-specific.
Literature Cited
- Adelmann, H. B. (1925) The development of the neural folds and cranial ganglia in the rat. J. Comp. Neurol. 39: 19–171.
- Altman, J., and S. A. Bayer (1978a) Development of the diencephalon in the rat. 1. Autoradiographic study of the time of origin and settling patterns of neurons of the hypothalamus. J. Comp. Neurol. 182: 945–972.
- Altman, J., and S. A. Bayer (1978b) Development of the diencephalon in the rat. II. Correlation of the embryonic development of the hypothalamus with the time of origin of its neurons. J. Comp. Neurol. 182: 973–994.
- Altman, J., and S. A. Bayer (1978c) Development of the diencephalon in the rat. III. Ontogeny of the specialized ventricular linings of the hypothalamic third ventricle. J. Comp. Neurol. 182: 995–1016.
- Altman, J., and S. A. Bayer (1979a) Development of the diencephalon in the rat. IV. Quantitative study of the time of origin of neurons and the internuclear chronological gradients in the thalamus. J. Comp. Neurol. 188: 455–472.
- Altman, J., and S. A. Bayer (1979b) Development of the diencephalon in the rat. V. Thymidine-radiographic observations on internuclear and intranuclear gradients in the thalamus. J. Comp. Neurol. 188: 473–500.
- Altman, J., and S. A. Bayer (1979c) Development of the diencephalon in the rat. VI. Re-evaluation of the embryonic development of the thalamus on the basis of thymidine-radiographic datings. J. Comp. Neurol. 188: 501524.
- Altman, J., and S. A. Bayer (1984) The development of the rat spinal cord. In: Advances in Anatomy, Embryology and Cell Biology. Vol. 74. Berlin: Springer-Verlag.
- Altman, J., and S. A. Bayer (1986) The development of the hypothalamus. In: Advances in Anatomy, Embryology and Cell Biology. Vol. 100. Berlin: Springer-Verlag.
- Altman, J., and S. A. Bayer (1988a) Development of the rat thalamus: I. Mosaic organization of the thalamic neuroepithelium. J. Comp. Neurol. 275: 346–377.
- Altman, J., and S. A. Bayer (1988b) Development of the rat thalamus: II. Time and site of origin and settling pattern of neurons derived from the anterior lobule of the thalamic neuroepithelium. J. Comp. Neurol. 275: 378–405.
- Altman, J., and S. A. Bayer (1988c) Development of the rat thalamus: III. Time and site of origin and settling pattern of neurons of the reticular nucleus. J. Comp. Neurol. 275: 406–428.
- Angerer, L. M., M. H. Stolter, and R. C. Angerer (1987) In situ hybridization with RNA probes: An anotated recipe. In K. L. Valentino, J. H. Eberwine, and J. D. Barchas (eds): In situ Hybridization. Applications to Neurobiology. Oxford: Oxford University Press, pp. 42–70.
- Angevine, J. B. (1965) Time of neuron origin in the hippocampal region: An autoradiographic study in the mouse. Exp. Neurol. Suppl. 2: 1–70.
- Angevine, J. B., Jr. (1970) Time of neuron origin in the diencephalon of the mouse. J. Comp. Neurol. 139: 129–188.
- von Baer, K. E. (1828) Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Königsberg: Bornträger.
- Barbe, M. F., and P. Levitt (1991) The early commitment of fetal neurons to the limbic cortex. J. Neurosci. 11: 519–533.
- Bayer, S. A. (1979) The development of the septal region in the rat. I. Neurogenesis examined with 3H-autoradiography. J. Comp. Neurol. 183: 89–106.
- Bayer, S. A. (1980) Quantitative 3H-thymidine radiographic analyses of neurogenesis in the rat amygdala. J. Comp. Neurol. 194: 845–875.
- Bayer, S. A. (1984) Neurogenesis in the rat neostriatum. Int. J. Dev. Neurosci. 2: 163–175.
- Bayer, S. A. (1985) Neurogenesis of the magnocellular basal telencephalic nuclei in the rat. Int. J. Dev. Neurosci. 2: 163–175.
- Bayer, S. A. (1986a) Neurogenesis in the rat primary olfactory cortex. Int. J. Dev. Neurosci. 4: 251–271.
- Bayer, S. A. (1986b) Neurogenesis in the anterior olfactory nucleus and its associated transition areas in the rat brain. Int. J. Dev. Neurosci. 4: 225–249.
- Bayer, S. A., and J. Altman (1987) Development of the preoptic area: Time and site of origin, migratory routes, and settling patterns of its neurons. J. Comp. Neurol. 265: 65–95.
- Bayer, S. A., and J. Altman (1991) Neocortical Development. New York: Raven Press.
-
Bergquist, H.
(1952)
Studies on the cerebral tube in vertebrates.
The neuromeres. Acta Zool.
33:
117–187.
10.1111/j.1463-6395.1952.tb00362.x Google Scholar
- Bergquist, H., and B. Källén (1953a) Studies on the topography of the migration areas in the vertebrate brain. Acta Anat. 17: 324–369.
- Bergquist, H., and B. Källén (1953b) On the development of neuromeres to migration areas in the vertebrate cerebral tube. Acta Anat. 18: 65–73.
- Bergquist, H., and B. Möllén (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J. Comp. Neurol. 100: 627–659.
- Blochlinger, K., L. Y. Jan, and Y. N. Jan (1991) Transformation of sensory organ identity by ectopic expression of Cut in Drosophila. Genes Dev. 5: 1124–1135.
- Boterenbrood, E. C. (1970) Differentiation in small grafts of the median region of the presumptive prosencephalon. J. Embryol. Exp. Morphol. 23: 751–759.
- Brown, J. W. (1967) The development of the amygdaloid complex in insectivorous bat embryos. Alabama J. Med. Sci. 4: 399–415.
- Bulfone, A., L. Puelles, M. H. Porteus, M. A. Frohman, G. R. Martin, and J. L. Rubenstein (1993) Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1, Gbx-2 and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J. Neurosci. 13: 3155–3172.
- Bulleit, R. F., H. Cui, J. Wang, and X. Lin (1994) NMDA receptor activation in differentiating cerebellar cell cultures regulates the expression of a new gene, Cns-1. J. Neurosci. 14: 1584–1595.
- Cajal, S. R. y (1911) Histologie du Système Nerveux de l'Homme et des Vertebrés. Paris: Maloine.
- Cobas, A., A. Fairén, G. Alvarez-Bolado, and M. P. Sdnchez (1991) Prenatal development of the intrinsic neurons of the rat neocortex: A comparative study of the distribution of GABA-immunoreactive cells and the GABAA receptor. Neuroscience 40: 375–397.
- Coggeshall, R. E. (1964) A study of the diencephalic development in the albino rat. J. Comp. Neurol. 122: 241–270.
- Cohen-Tannoudji, M., C. Babinet, and M. Wassef (1994) Early determination of a mouse somatosensory cortex marker. Nature 368: 460–463.
- Doe, C. Q., Y. Hiromi, W. J. Gehring, and C. S. Goodman (1988a) Expression and function of the segmentation gene fushi tarazu during Drosophila neurogenesis. Science 239: 170–174.
- Doe, C. Q., D. Smouse, and C. S. Goodman (1988b) Control of neuronal fate by the Drosophila segmentation gene even-skipped. Nature 333: 376–379.
- Drooglever Fortuyn, A. B. (1912) Die Ontogenie der Kerrie des Zwischenhirns beim Kaninchen. Arch. Anat. Physiol. Abt. Anat. 36: 303–352.
- Easter, S. S., Jr., L. S. Ross, and A. Frankfurter (1993) Initial tract formation in the mouse brain. J. Neurosci. 13: 285–299.
- Eckenhoff, M. F., and P. Rakic (1984) Radial organization of the hippocampal dentate gyrus: A Golgi, ultrastructural and immunocytochemical analysis in the developing rhesus monkey. J. Comp. Neurol. 223: 1–21.
- Eycleshymer, A. C., and D. M. Shoemaker (1917) Anatomical Names. New York: William Wood and Company.
- Frantz, G. D., A. P. Bohner, R. M. Akers, and S. K. McConnell (1994) Regulation of the POU domain gene SCIP during cerebral cortical development. J. Neurosci. 14: 472–485.
- García-Bellido, A. (1975) Genetic control of wing disk development in Drosophila. Ciba Found. Symp. 29: 161–182.
- Gehring, W. J. (1987) Homeoboxes in the study of development. Science 236: 1245–1252.
-
Gilbert, M. S.
(1934)
The early development of the human diencephalon.
J. Comp. Neurol.
62:
81–116.
10.1002/cne.900620105 Google Scholar
- Gilbert, S. F., and L. Saxén (1993) Spemann's organizer: Models and molecules. Mech. Dev. 41: 73–89.
- Gilland, E., and R. Baker (1993) Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat. 148: 110–123.
- Grino, M., W. S. Young III, and J.-M. Burgunder (1989) Ontogeny of expression of the corticotropin-releasing factor gene in the hypothalamic paraventricular nucleus and of the proopiomelanocortin gene in rat pituitary. Endocrinology 124: 60–68.
- Grönberg, G. (1901) Die Ontogenese eines niedern Säugergehirns nach Untersuchungen an Erinaceus europeus. Zool. Jahrb. Anat. Abt. 15: 261–384.
- Gurdjian, E. S. (1927) The diencephalon of the albino rat. 43: 1–114.
- Guthrie, S., and A. Lumsden (1991) Formation and regeneration of rhombo mere boundaries in the developing chick hindbrain. Development 112: 221–229.
- Guthrie, S., I. Muchamore, A. Kuroiwa, H. Marshall, R. Krumlauf, and A. Lumsden (1992) Neuroectodermal autonomy of Hox-2.9 expression revealed by rhombomere transpositions. Nature 356: 157–159.
- Halliday, A. L., and C. L. Cepko (1992) Generation and migration of cells in the developing striatum. Neuron 9: 15–26.
- Hara, Y., A. C. Rovescalli, Y. Kim, and M. Nirenberg (1992) Structure and evolution of four POU domain genes expressed in mouse brain. Proc. Natl. Acad. Sci. USA 89: 3280–3284.
- He, X., and M. G. Rosenfeld (1991) Mechanisms of complex transcriptional regulation: Implications for brain development. Neuron 7: 183–196.
- He, X., M. N. Treacy, D. M. Simmons, H. A. Ingraham, L. W. Swanson, and M. G. Rosenfeld (1989) Expression of a large family of POU-domain regulatory genes in mammalian brain development. Nature 340: 35–42.
- He, X. R. Gerrero, D. M. Simmons, R. E. Park, C. R. Lin, L. W. Swanson, and M. G. Rosenfeld (1991) Tst-1, a member of the POU domain gene family, binds the promoter of the gene encoding the cell surface adhesion molecule PO. Mol. Cell Biol. 11: 1739–1744.
- Herrick, C. J. (1910) The morphology of the forebrain in amphibia and reptilia. J. Comp. Neurol. 20: 413–547.
- Herrick, C. J. (1917) The internal structure of the midbrain and thalamus of Necturus. J. Comp. Neurol. 28: 215–348.
- Hinds, J. W. (1968a) Autoradiographic study of histogenesis in the mouse olfactory bulb. I. Time of origin of neurons and neuroglia. J. Comp. Neurol. 134: 287–304.
- Hinds, J. W. (1968b) Autoradiographic study of histogenesis in the mouse olfactory bulb. II. Cell proliferation and migration. J. Comp. Neurol. 134: 305–321.
-
Hines, M.
(1922)
Studies in the growth and differentiation of the telencephalon in man. The fissura hippocampi.
J. Comp. Neurol.
34:
73–171.
10.1002/cne.900340104 Google Scholar
- His, W. (1888) Zur Geschichte des Gehirns, sowie der centralen und peripherischen Nervenbahnen beim menschlichen Embryo. Abh. K. Sdchs. Ges. Wiss. Math. -Phys. KI. 15: 675–735.
- His, W. (1890) Die Formentwicklung des menschlichen Vorderhirns vom Ende des ersten bis zum Beginn des dritten Monats. Ang. K. Sdchs. Ges. Wiss. Math. -Phys. KI. 15: 675–735.
- His, W. (1895) Die anatomische Nomenclature. Arch. Anat. Entwicklung. Suppl. Band.
- His, W. (1904) Die Entwicklung des menschlichen Gehirns. Leipzig: Hirzel.
- Hochstetter, F. (1929) Beiträge zur Entwicklungsgeschichte des menslichen Gehirns. II. Teil, 3. Lieferung. Die Entwicklung des Mittel- und Rautenhirns. Vienna: Deuticke.
- Humphrey, T. (1966) Correlation between the development of the hippocampal formation and the differentiation of the olfactory bulbs. Alabama J. Med. Sci. 3: 235–269.
- Humphrey, T. (1972) The development of the anterior olfactory nucleus of human fetuses. In W. Bargmann and J. P. Schadé (eds): The Rhinencephalon and Related Structures. Progress in Brain Research. Vol. 3. Amsterdam: Elsevier, pp. 170–190.
- Hyyppä, M. (1969) Differentiation of the hypothalamic nuclei during ontogenetic development in the rat. Z. Anat. EntwickI. -Gesch. 129: 41–52.
- Ifft, J. D. (1971) An autoradiographic study of the time of final division of neurons in rat hypothalamic nuclei. J. Comp. Neurol. 144: 193–204.
-
Jacobson, M.
(1991)
Developmental Neurobiology,
3rd ed.
New York: Plenum.
10.1007/978-1-4757-4954-0 Google Scholar
- Johnson, W. A., and J. A. Hirsch (1990) Binding of a Drosophila POU-domain protein to a sequence element regulating gene expression in specific dopaminergic neurons. Nature 342: 467–470.
- Johnston, J. B. (1923) Further contributions to the study of the evolution of the forebrain. J. Comp. Neurol. 35: 337–481.
- Källén, B. (1956) Studies on the mitotic activity in chick and rabbit brains during ontogenesis. Kgl. Fysiogr. Sällsk. Lundl Handl. 26–17).
- Kenyon, C., and B. Wang (1991) A cluster of Antennapedia-class homeobox genes in a nonsegmented animal. Science 253: 516–517.
- Khale, W. (1956) Zur Entwicklung des menslichen Zwischenhirnes: Studien ueber die Matrixphasen und die örtlichen Reiftingsunterschiede im embryonalen menschlichen Gehirn: II. Mitteilung. Deutsche Z. Nervenheilkd. 175: 259–318.
- Keynes, R., and A. Lumsden (1990) Segmentation and the origin of regional diversity in the vertebrate central nervous system. Neuron 2: 1–9.
- Keyser, A. (1972) The development of the diencephalon of the Chinese hamster. An investigation on the validity of the criteria of subdivision of the brain. Acta Anat. 83 (Suppl. 59): 1–178.
- Kilpatrick, T. J., and P. F. Bartlett (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10: 255–265.
- Kimmel, C. B. (1990) Embryonic origins of segmented nervous systems. In S. Roth (ed): Molecular Approaches to Supracellular Phenomena. Philadelphia: University of Pennsylvania Press.
- Kishi, K. (1987) Golgi studies on the development of granule cells of the rat olfactory bulb with reference to migration in the subependymal layer. J. Comp. Neurol. 258: 112–124.
- Kostovic, I., and M. E. Molliver (1974) A new interpretation of the laminar development of cerebral cortex: Synaptogenesis in different layers of the neopallium in the human fetus. Anat. Rec. 178: 395.
- Kuhlenbeck, H. (1929) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat. Anz. 70: 122–142.
- Kuhlenbeck, H. (1937) The ontogenetic development of the diencephalic centers in a bird's brain (chick) and comparison with the reptilian and mammalian diencephalon. J. Comp. Neurol. 66: 23–75.
- Kuhlenbeck, H. (1948) The derivatives of the thalamus ventralis in the human brain and their relation to the so-called subthalamus. Military Surg. 102: 433–447.
- Kuhlenbeck, H. (1951) The derivatives of the thalamus dorsalis and epithalamus in the human brain: Their relation to cortical and other centers. Military Surg. 108: 205–256.
- Kuhlenbeck, H., and W. Haymaker (1949) The derivatives of the hypothalamus in the human brain: Their relation to the extrapyramidal and autonomic systems. Military Surg. 105: 26–52.
- Kuhn, R., E. S. Monuki, and G. Lemke (1991) The gene encoding the transcription factor SCIP has features of an expressed retroposon. Mol. Cell Biol. 11: 4642–4650.
- von Kupffer, C. (1906) Die Morphogenie des Centralnervensystems. In O. Hertwig (ed): Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere. Jena: Gustav Fischer Verlag.
- LaMantia, A. S., M. C. Colbert, and E. Linney (1993) Retinoic acid induction and regional differentiation prefigure olfactory pathway formation in the mammalian forebrain. Neuron 10: 1035–1048.
- Lamb, T. M., A. K. Knecht, W. C. Smith, S. E. Stachel, A. N. Economides, N. Stahl, G. D. Yancopolous, and R. M. Harland (1993) Neuial induction by the secreted polypeptide noggin. Science 262: 713–718.
- Lammers, G. J., A. A. M. Gribnau, and H. J. ten Donkelaar (1980) Neurogenesis in the basal forebrain of the Chinese hamster (Cricetulus griseus). II. Site of neuron origin: Morphogenesis of the ventricular ridges. Anat. Embryol. 156: 331–348.
- Lawrence, P. A. (1992) The making of a fly. Oxford: Blackwell.
- LeGros Clark, W. E. (1938) Morphological aspects of the hypothalamus. In W. E. LeGros Clark, J. Beattie, and G. Riddoch (eds): The Hypothalamus. Morphological, Functional, Clinical and Surgical Aspects. Edinburgh: Oliver and Boyd, pp. 1–68.
- Le Moine, C., and W. S. Young (1992) RHS2, a POU domain-containing gene, and its expression in developing and adult rat. Proc. Natl. Acad. Sci. USA 89: 3285–3289.
- Levison, S. W., and J. E. Goldman (1993) Both oligodendrocytes and astrocytes develop from progenitors in the subventricular zone of postnatal rat forebrain. Neuron 10: 201–212.
- Lewis, E. B. (1963) Genes and developmental pathways. Am. Zool. 3: 33–56.
- Lewis, E. B. (1978) A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.
- Li, S., B. Crenshaw, E. J. Rawson, D. M. Simmons, H. A. Ingraham, L. W. Swanson, and M. G. Rosenfeld (1990) Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU domain gene Pit-1. Nature 347: 528–533.
- Li, P., X. He, M. R. Gerrero, M. Mok, A. Agarwal, and M. G. Rosenfeld (1993) Spacing and orientation of bipartite DNA-binding motifs as potential functional determinants for POU domain factors. Genes Dev. 7: 2483–2496.
- Lin, S. C., S. Li, D. W. Drolet, and M. G. Rosenfeld (1994) Pituitary ontogeny of the Snell dwarf mouse reveals Pit-1-independent and Pit-1-dependent origins of the thyrotrope. Development 120: 515–522.
- Lois, C., and A. Alvarez-Buylla (1994) Long-distance neuronal migration in the adult mammalian brain. Science 264: 1145–1148.
- Lu, S., L. D. Bogarad, M. T. Murtha, and F. H. Ruddle (1992) Expression pattern of a murine homeobox gene, Dbx, displays extreme spatial restriction in embryonic forebrain and spinal cord. Proc. Natl. Acad. Sci. USA 89: 8053–8057.
- Lumsden, A. (1991) Cell lineage restrictions in the chick embryo hindbrain. Phil. Trans. R. Soc. London [Biol.] 331: 281–286.
- Luskin, M. B. (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11: 173–189.
- Maddox, J. (1992) Is molecular biology yet a science? Nature 355: 201.
- Marín-Padilla, M. (1978) Dual origin of the mammalian neocortex and evolution of the cortical plate. Anat. Embryol. 152: 109–126.
- Mathis, J. M., D. M. Simmons, X. He, L. W. Swanson, and M. G. Rosenfeld (1992) Brain-4: A novel mammalian POU domain transcription factor exhibiting restricted brain-specific expression. EMBO J. 11: 2551–2561.
- McGinnis, W., and R. Krumlauf (1992) Homeobox genes and axial patterning. Cell 68: 283–302.
- Meek, A. (1907) The segments of the vertebrate brain and head. Anat. Anz. 31: 408–415.
- Meier, S., and P. P. L. Tam (1982) Metameric pattern development in the embryonic axis of the mouse. I. Differentiation of the cranial segments. Differentiation 21: 95–108.
- Meijer, D., A. Graus, R. Kraay, A. Langeveld, M. P. Mulder, and G. Grosveld (1990) The octamer binding factor Oct6: cDNA cloning and expression in early embryonic cells. Nucleic Acids Res. 18: 7357–7365.
- von Mihalkovicz, V. (1877) Entwicklungsgeschichte des Gehirns. Leipzig.
- Milner, R. J., and J. G. Sutcliffe (1983) Gene expression in rat brain. Nucleic Acids Res. 11: 5497–5520.
- Miura, R. (1933) Über die Differenzierung der Grundbestandteile im Zwischenhirn des Kaninchens. Anat. Anz. 77: 1–65.
- Monuki, E. S., R. Kuhn, and G. Lemke (1993) Repression of the myelin PO gene by the POU transcription factor SCIP. Mech. Dev. 42: 15–32.
- Monuki, E. S., G. Weinmaster, R. Kuhn, and G. Lemke (1989) SCIP: a glial POU domain gene regulated by cyclic AMP. Neuron 3: 783–793.
- Morris-Kay, G., and F. Tuckett (1987) Fluidity of the neural epithelium during forebrain formation in rat embryos. J. Cell Sci. Suppl. 8: 433–449.
-
Nieuwkoop, P. D.
(1991)
The successive steps in the pattern formation of the amphibian central nervous system.
Dev. Growth Differ.
33:
149–154.
10.1111/j.1440-169X.1991.00149.x Google Scholar
- Niimi, K., I. Harada, J. Kusaka, and S. Kishi (1962) The ontogenetic development of the diencephalon of the mouse. Tokushima J. Exp. Med. 8: 203–238.
- Noden, D. (1991) Vertebrate craniofacial development: The relation between ontogenetic process and morphological outcome. Brain Behav. Evol. 38: 190–225.
- O'Farrell, P. H. (1994) Unanimity waits in the wings. Nature 368: 188–189.
- Orr, H. A. (1887) Contributions to the embryology of the lizard. J. Morphol. 1: 311–372.
- Peifer, M., F. Karch, and W. Bender (1987) The bithorax complex: control of segmental identity. Genes Dev. 1: 891–898.
- Price, M., D. Lazzaro, T. Pohl, M.-G. Mattei, U. Wither, J.-C. Olivo, D. Duboule, and R. Di Lauro (1992) Regional expression of the homeobox gene Nkx-2.2 in the developing mammalian forebrain. Neuron 8: 241–255.
- Pringle, N. P., H. S. Mudhar, E. J. Collarini, and W. D. Richardson (1992) PDGF receptors in the rat CNS: During late neurogenesis, PDGF alpha-receptor expression appears to be restricted to glial cells of the oligodendrocyte lineage. Development 115: 535–551.
- Puelles, L., and J. L. Rubenstein (1993) Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggest a neuromeric organization. Trends Neurosci. 16: 472–479.
- Puelles, L., J. A. Amat, and M. Martinez-de-la Torre (1987) Segment-related, mosaic neurogenetic pattern in the forebrain and mesencephalon of early chick embryos: I. Topography of AChE-positive neuroblasts up to stage HH18. J. Comp. Neurol. 266: 247–268.
- Raedler, E., and A. Raedler (1978) Autoradiographic study of early neurogenesis in rat neocortex. Anat. Embryol. 154: 267–284.
- Raedler, E., A. Raedler, and S. Feldhaus (1980) Dynamical aspects of neocortical histogenesis in the rat. Anat. Embryol. 158: 253–269.
- Rakic, P. (1988) Specification of cerebral cortical areas. Science 241: 170–176.
- Rakic, P., and R. L. Sidman (1969) Telencephalic origin of pulvinar neurons in the fetal human brain. Z. Anat. Entwickl. -Gesch. 129: 53–82.
- Rakic, P., and P. I. Yakovlev (1968) Development of the corpus callosurn and cavurn septi in man. J. Comp. Neurol. 132: 45–72.
- Ready, D. F. (1989) A multifaceted approach to neural development. Trends Neurosci. 12: 102–110.
- Reese, B. E., and R. J. Colello (1992) Neurogenesis in the retinal ganglion cell layer of the rat. Neuroscience 46: 419–429.
-
Rendahl, H.
(1924)
Embryologische und morphologische Studien über das Zwischenhirn beim Huhn.
Acta Zool.
5:
241–344.
10.1111/j.1463-6395.1924.tb00169.x Google Scholar
- Reynolds, B. A., and S. Weiss (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255: 1707–1710.
- Rickman, M., and J. R. Wolff (1981) Differentiation of “preplate” neurons in the pallium of the rat. Bibliotheca Anat. 19: 142–146.
- Rincón-Limas, D. E., R. S. Geske, J.-J. Xue, C. Y. Hsu, P. A. Overbeek, and P. I. Patel (1994) 5-Flanking sequences of the human HPRT gene direct neuronal expression in the brain of transgenic mice. J. Neurosci. Res. 38: 259–268.
- Rose, J. E. (1942) The ontogenetic development of the rabbit's diencephalon. J. Comp. Neurol. 77: 61–129.
- Rosenfeld, M. G. (1991) POU-domain transcription factors: Pou-er-ful developmental regulators. Genes Dev. 5: 897–907.
- Ruiz i Altaba, A. (1994) Pattern formation in the vertebrate neural plate. Trends Neurosci. 17: 233–243.
- Sánchez, M. P., C. Frassoni, G. Alvarez-Bolado, R. Spreafico, and A. Fairén (1992) Distribution of calbindin and parvalbumin in the developing somatosensory cortex and its primordium in the rat: An immunocytochemistry study. J. Neurocytol. 21: 717–736.
- Schlessinger, A. R., W. M. Cowan, and D. I. Gottlieb (1975) An autoradiographic study of the time of origin and the pattern of granule cell migration in the dentate gyrus of the rat. J. Comp. Neurol. 159: 149–175.
- Schlessinger, A. R., W. M. Cowan, and L. W. Swanson (1978) The time of origin of neurons in Ammon's horn and the associated retrohippocampal fields. Anat. Embryol. 154: 153–173.
- Schmucker, D., H. Taubert, and H. Jäckle (1992) Formation of the Drosophila larval photoreceptor organ and its neuronal differentiation require continuous Krüppel gene activity. Neuron 9: 1025–1039.
- Scott, M. D., J. W. Tamkun, and G. W. Hartzell (1989) The structure and function of the homeodomain. Biochim. Biophys. Acta Rev. Cancer 989: 25–48.
- Shatz, C. J., J. J. M. Chun, and M. B. Luskin (1988) The role of the subplate in the development of mammalian telencephalon. In A. Peters and E. G. Jones (eds): Cerebral Cortex. Vol. 7. Development and Maturation of Cerebral Cortex. New York: Plenum Press, pp. 35–58.
- Simeone, A., M. Gulisano, D. Acampora, A. Stornaiuolo, M. Rambaldi, and E. Boncinelli (1992) Two vertebrate homeobox genes related to the Drosophila empty spiracles genes are expressed in the embryonic cerebral cortex. EWBO J. 11: 2541–2550.
- Simmons, D. M., J. L. Arriza, and L. W. Swanson (1989) A complete protocol for in situ hybridization of messenger RNAs in brain and other tissues with radiolabeled single-stranded RNA probes. J. Histotechnol. 12: 169–181.
- Simmons, D. M., J. W. Voss, H. A. Ingraham, J. M. Holloway, R. S. Broide, M. G. Rosenfeld, and L. W. Swanson (1990) Pituitary cell phenotypes involve cell-specific Pit-1 mRNA translation and synergistic interactions with other classes of transcription factors. Genes Dev. 4: 695–711.
- Smart, I. (1961) The subependymal layer of the mouse brain and its cell production as shown by radioautography after thymidine-3H injection J. Comp. Neurol. 116: 325–347.
- Smart, I. H. M. (1972) Proliferative characteristics of the ependymal layer during the early development of the mouse diencephalon, as revealed by recording the number, location, and plane of cleavage of mitotic figures. J. Anat. 113: 109–129.
- Smart, I. H. M. (1976) A pilot study of cell production by the ganglionic eminences of the developing mouse brain. J. Anat. 121: 71–84.
- Smart, I. H. M. (1984) Histogenesis of the mesocortical area of the mouse telencephalon. J. Anat. 138: 537–552.
- Smart, I. H. M., and G. M. McSherry (1982) Growth patterns in the lateral wall of the mouse telencephalon. II. Histological changes during and subsequent to the period of isocortical neuron production. J. Anat. 134: 415–442.
- Stensaas, L. J. (1967a) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. I. Fifteen millimeter stage, spongioblast morphology. J. Comp. Neurol. 129: 59–70.
- Stensaas, L. J. (1967b) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. II. Twenty millimeter stage, neuroblast morphology. J. Comp. Neurol. 129: 71–84.
- Stensaas, L. J. (1967c) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. III. Twentynine millimeter stage, marginal lamina. J. Comp. Neurol. 130: 149–162.
- Stensaas, L. J. (1967d) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. IV. Forty-one millimeter stage, intermediate lamina. J. Comp. Neurol. 131: 409–422.
- Stensaas, L. J. (1967e) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. V. Sixty millimeter stage, glial cell morphology. J. Comp. Neurol. 131: 423–436.
- Stensaas, L. J. (1968) The development of hippocampal and dorsolateral pallial regions of the cerebral hemisphere in fetal rabbits. VI. Ninety millimeter stage, cortical differentiation. J. Comp. Neurol. 132: 93–108.
- Stent, G. (1985) The role of cell lineage in development. Phil. Trans. R. Soc. London 312: 3–19.
-
Ströer, W. F. H.
(1956)
Studies on the diencephalon. I. The embryology of the diencephalon of the rat.
J. Comp. Neurol.
105:
1–24.
10.1002/cne.901050102 Google Scholar
- Stoykova, A., and P. Gruss (1994) Roles of pax-genes in developing and adult brain as suggested by expression patterns. J. Neurosci. 14: 1359–1412.
- Stoykova, A. S., S. Sterrer, J. R. Erselius, A. K. Hatzopoulos, and P. Gruss (1992) Mini- Oct and Oct-2c: Two novel, functionally diverse murine Oct-2 gene products are differentially expressed in the CNS. Neuron 8: 541–558.
- Sturrock, R. R. (1980) A developmental study of the mouse neostriatum. J. Anat. 130: 246–261.
- Sturrock, R. R., and I. H. M. Smart (1980) A morphological study of the mouse subependymal layer from embryonic life to old age. J. Anat. 130: 391–415.
- Swanson, L. W. (1987) The hypothalamus. In A. Björklund, T. Hökfelt and L. W. Swanson (eds): Handbook of Chemical Neuroanatomy. Vol. 5. Integrated Systems of the CNS. Part I. Amsterdam: Elsevier, pp. 1–124.
- Swanson, L. W. (1992) Brain Maps: Structure of the Rat Brain. Amsterdam: Elsevier.
- Swanson, L. W., and W. M. Cowan (1977) An autoradiographic study of the organization of the efferent connections of the hippocampal formation of the rat. J. Comp. Neurol. 172: 49–84.
- Swanson, L. W., and H. G. J. M. Kuypers (1980) A direct projection from the ventromedial nucleus and retrochiasmatic area of the hypothalamus to the medulla and spinal cord of the rat. Neurosci. Lett. 17: 307–312.
- Swanson, L. W., C. Köher, and A. Björklund (1987) The limbic region. I: The septohippocampal system. In A. Björklund, T. Hökfelt, and L. W. Swanson (eds): Handbook of Chemical Neuroanatomy. Vol. 5. Integrated Systems of the CNS. Part I. Amsterdam: Elsevier, pp. 125–277.
- Szentágothai, J., B. Flerkó, B. Mess, and B. Halász (1962) Hypothalamic Control of the Anterior Pituitary. An Experimental-Morphological Study. Budapest: Akadémiai Kiadó.
-
Tandler, J., and
H. Kantor
(1907)
Beiträge zur Entwickelung des Vertebratengehirns. I. Die Entwickelungsgeschichte des Geckohirnes.
Anat. Hefte
33:
553–662.
10.1007/BF02214457 Google Scholar
- Tao, W., and E. Lai (1992) Telencephalon-restricted expression of BF-1, a new member of the HNF-3/ fork head gene family, in the developing rat brain. Neuron 8: 957–966.
- ten Donkelaar, H. J., and P. J. W. Dederen (1979) Neurogenesis in the basal forebrain of the Chinese hamster (Cricetulus griseus). I. Time of neuron origin. Anat. Embryol. 156: 331–348.
- Tomlinson, A. (1989) Cellular interactions in the developing Drosophila eye. Development 104: 183–193.
- Tomlinson, A., B. E. Kimmel, G. M. Rubin (1988) Rough, A Drosophila homeobox gene required in photoreceptors R2 and R5 for inductive interactions in the developing eye. Cell 55: 771–784.
- Tuckett, F., and G. M. Morris-Kay (1985) The kinetic behavior of the cranial neural epithelium during neurulation in the rat. J. Embryol. Exp. Morphol. 85: 111–119.
- Vaage, S. (1969) Segmentation of the primitive neural tube in chick embryos. Ergeb. Anat. Entwickl. 41 (3): 1–87.
- Valverde, F., M. V. Facal-Valverde, M. Santacana, and M. Heredia (1989) Development and differentiation of early generated cells of sublayer VIb in the somatosensory cortex of the rat: A correlated Golgi and autorad. iographic study. J. Comp. Neurol. 290: 118–140.
- Van Eden, C. G., L. Mrzljak, P. Voorn, and H. B. M. Uylings (1989) Prenatal development of GABAergic neurons in the nebcortex of the rat. J. Comp. Neurol. 289: 213–227.
- Way, J. C., L. Way, J. Q. Run, and A. Wang (1991) The mec-3 gene contains cis-acting elements mediating positive and negative regulation in cells produced by asymmetric cell division in Caenorhabditis elegans. Genes Dev. 5: 2199–221.
- Yoshihara, Y., S. Oka, Y. Nemoto, Y. Watanabe, S. Nagata, H. Kagamiyama, and K. Mori (1994) An ICAM-related neuronal glycoprotein, telencephalin, with brain segment-specific expression. Neuron 12: 541–553.
Appendix Literature Cited
- von Baer, K. E., (1828–1837) Entwicklungsgeschichte der Thiere: Beobachtung und Reflexion. Königsberg: Bornträger.
-
Hines, M.
(1922)
Studies in the growth and differentiation of the telencephalon in man.
J. Comp. Neurol.
34:
73–171.
10.1002/cne.900340104 Google Scholar
- Snyder, J. P. (1987) Map Projections: A Working Manual. Washington, DC: U. S. Geological Survey Professional Paper 1395.
- Snyder, J. P. (1993) Flattening the Earth: Two Thousand Years of Map Projections. Chicago: University of Chicago Press.
- Swanson, L. W. (1992) Brain Mapic Structure or the Rat Brain. Amaordam: Elsevier.
- Van Essen, D. C., J. H. R. Maunsell (1980) Two-dimensional maps of the cerebral cortex. J. Comp. Neurol. 191: 255–281.