Dopaminergic and GABAergic cerebrospinal fluid-contacting neurons along the central canal of the spinal cord of the eel and trout
Corresponding Author
Dr. B. L. Roberts
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Department of Zoology, Trinity College, University of Dublin, Dublin 2, IrelandSearch for more papers by this authorSuharti Maslam
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorG. Scholten
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorW. Smit
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorCorresponding Author
Dr. B. L. Roberts
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Department of Zoology, Trinity College, University of Dublin, Dublin 2, IrelandSearch for more papers by this authorSuharti Maslam
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorG. Scholten
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorW. Smit
Department of Experimental Zoology, Biological Centre, University of Amsterdam, Amsterdam, The Netherlands
Search for more papers by this authorAbstract
In anamniote vertebrates the central region of the spinal cord has been implicated in its regeneration. This is a complex region and so as a first step in understanding its possible regenerative role we have examined the organization of the cells that contact the lumen of the spinal cord in two teleost fishes, eel and trout, using immunohistochemical procedures and light and electron microscopy.
Cell bodies immunoreacting positively with antibodies for tyrosine hydroxylase and for dopamine were located at the ventral rim of the central canal, whereas cell bodies reacting for an antibody for gamma-aminobutyric acid were more laterally located. None of the canal-contacting cells were positively immunoreactive for choline acetyltransferase. All immunopositive cells have a similar morphology: the amphora-shaped perikaryon is bipolar and has a single process that extends to the lumen of the canal, and another that branches and forms extensive lateral and ventral plexuses. Electron microscopic investigations of the ventral dopaminergic cells showed that the apical processes bear one or more cilia, which protrude into the canal lumen and which originate from within a superficial rosette of nonciliated processes. The ventral process was occasionally seen to form synapses; the cell body was also the target of synapses. © 1995 Wiley-Liss, Inc.
Literature Cited
- Agduhr, E. (1922) Uber ein zentrales Sinnesorgan (?) bei den vertebraten. Zeitschr. f. d. ges. Anat. 66: 229–357.
- Anderson, M. J., and S. G. Waxman (1981) Morphology of regenerated spinal cord in Sternarchus albifrons. Cell Tissue Res. 219: 1–8.
- Anderson, M. J., S. G., Waxman, and M. Laufer (1983) Fine structure of regenerated ependyma and spinal cord in Sternarchus albifrons. Anat. Rec. 205: 73–83.
- Anderson, M. J., K. A. Swanson, S. G., Waxman, and L. F. Eng (1984) Glial fibrillary acidic protein in regenerating teleost spinal cord. J. Histochem. Cytochem. 31: 1099–1106.
- Barber, R. P., J. E., Vaughn, and E. Roberts (1982) The cytoarchitecture of GABAergic neurons in the rat spinal cord. Brain Res. 238: 305–328.
- Baumgarten, H. G., B., Falck, and H. Wartenburg (1970) Adrenergic neurons in the spinal cord of the pike (Esox lucius) and their relation to the caudal neurosecretory system. Z. Zellforsch. 107: 479–498.
- Bernstein, J. J. (1964) Relation of spinal cord regeneration to age in adult goldfish. Exp. Neurol. 9: 161–174.
- Bradbury, M. W. B., and W. Lathem (1965) A flow of cerebriospinal fluid along the central canal of the spinal cord of the rabbit and communication between this canal and the sacral subarachnoid space. J. Physiol. 181: 785–800.
- Bruni, J. E., and K. Reddy (1987) Ependyma of the central canal of the rat spinal cord: A light and transmission electron microscopic study. J. Anat. 152: 55–70.
- Bryant, S. V., and K. J. Wozny (1974) Stimulation of limb regeneration in the lizard Xantusia vigilis by means of ependymal implant. J. Exp. Zool. 189: 339–352.
- Cohan, C. S., J. A., Connor, and S. B. Kater (1987) Electrically and chemically mediated increases in intracellular calcium in neuronal growth cones. J. Neurosci. 7: 3588–3599.
- Chesler, M., and C. Nicholson (1985) Organization of the filum terminale in the frog. J. Comp. Neurol. 239: 431–444.
- Dale, N., A., Roberts, O. P. Ottersen, and J. Storm-Mathisen (1987) The morphology and distribution of 'Kolmer-Agduhr cells,' a class of cerebrospinal-fluid-contacting neurons revealed in the frog embryo spinal cord by GABA immunocytochemistry. Proc. R. Soc. (Lond) (Biol) 232: 193–203.
- Doyle, C. A., and D. J. Maxwell (1991) Catecholaminergic innervation of the spinal dorsal horn: A correlated light and electron microscopic analysis of tyrosine hydroxylase-immunoreactive fibers in the cat. Neuroscience 45: 161–176.
- Egar, M., and M. Singer (1972) The role of the ependyma in spinal cord regeneration in the urodele, Triturus. Exp. Neurol. 37: 422–430.
- Fleetwood-Walker, S. M., P. J., Hope, and R. Mitchell (1988) Antinoceptive actions of descending doparninergic tracts of cat and rat somato-sensory neurones. J. Physiol. Lond. 399: 335–348.
- Franzoni, M. Y., J. Thibault, A. Fasolo, M. G. Marinoli, F. Scaranari, and A. Calas (1986) Organization of tyrosine-hydroxylase immunopositive neurons in the brain of the crested newt, Triturus critatus carnifex. J. Comp. Neurol. 251: 121–134.
- Gilmore, S. A., and J. E. Leiting (1980) Changes in the central canal of immature rats following spinal cord injury. Brain Res. 201: 185–189.
- González, A., O., Marin, R. Tuinhof, and W. J. A. J. Smeets (1994) Developmental aspects of catecholamine systems in the brain of anuran amphibians. In W. J. A. J. Smeets and A. Reiner (eds): Phylogeny and Development of Catecholamine Systems in the CNS of Vertebrates. Cambridge: Cambridge University Press, pp. 77–102.
- Haydon, P. G., D. P., McCobb, and S. B. Kater (1984) Serotonin selectively inhibits growth cone motility and synaptogenesis of specific identified neurons. Science 224: 561–564.
- Honma, S. (1970) Presence of monoaminergic neurons in the spinal cord and intestine of the lamprey, Lampetra japonica. Arch. Histol. Jap. 32: 383–393.
- Jaeger, C. B., G., Teitelman, T. H. Joh, V. R. Albert, D. H. Park, and D. J. Reis (1983) Some neurons of the rat central nervous system contain aromatic L-amino acid decarboxylase but not monoamines. Science 219: 1233–1235.
- Jaeger, C. B., D. A., Ruggiero, V. R. Albert, T. H. Joh, and D. J. Reis (1984) Immunocytochemical localization of aromatic-L-amino acid decarboxylase. In A. Björklund and T. Hökfelt (eds): Handbook of Chemical Neuroanatomy. Classical Transmitters in the CNS, Part I, Vol. 2. Amsterdam: Elsevier, pp. 387–408.
- Kolmer, W. (1920) Das “Sagittalorgan” der Wirbeltiere. pp. 652–713.
- Kotrschal, K., W. D., Krautgartner, and H. Adam (1985) Distribution of aminergic neurons in the brain of the sterlet, Acipenser ruthenus (Chondrostei, Actinopterygii). J. Hirnforsch. 26: 65–72.
- La Motte, C. C. (1987) Vasoactive intestinal polypeptide cerebrospinal fluid-contacting neurons of the monkey and cat spinal central canal. J. Comp. Neurol. 258: 527–541.
- Leatherland, J. F., and J. M. Dodd (1968) Studies on the structure, ultrastructure and function of the subcommissural organ-Reissner's fibre complex of the European eel, Anguilla anguilla L. Zeit. Zell. 89: 533–549.
- Le Bras, Y. M. (1979) Circadian rhythm in brain catecholamine concentrations in the teleost: Anguilla anguilla L. Comp. Biochem. Physiol. 62C: 115–117.
- Matthews, M. A., M. F. St Onge, and C. L. Faciane (1978). Abnormal proliferation of ependymal cells following spinal cord injury. Anat. Rec. 190: 472–473.
- Molist, P., S., Maslam, E. Velzing, and B. L. Roberts (1993) The organization of cholinergic neurons in the mesencephalon of the eel, Anguilla anguilla, as determined by choline acetyltransferase immunohistochemistry and acetycholinesterase enzyme histochemistry. Cell Tissue Res. 271: 555–566.
- Nagatsu, I., N., Karasawa, M. Yoshida, Y. Kondo, T. Sato, H. Niimi, and T. Nagatsu (1982) Immunohistocytochemical distribution of aminecontaining neurons related to circumventricular organs in the frog brain, Biomed. Res. 3: 623–636.
- Nagatsu, I., M., Sakai, M. Yoshida, and T. Nagatsu (1988) Aromatic L-amino acid decarboxylase-immunoreactive neurons in and around the cerebrospinal fluid-contacting neurons of the central canal do riot contain doparnine or serotonin in the mouse and rat spinal cord. Brain Res. 475: 91–102.
- Norlander, R. H., and M. Singer (1978) The role of ependyma in regeneration of the spinal cord in the urodele amphibian tail. J. Comp. Neurol. 180: 349–374.
- Parent, A., and R. G. Northcutt (1982) The monoamine-containing neurons in the brain of the garfish, Lepisosteus osseus. Brain Res. Bull. 9: 189–204.
- Peute, J. (1969) Fine structure of the paraventricular organ of Xenopus laevis tadpoles. Z. Zellforsch. 97: 564–575.
- Pindzola, R. P., R. H., Ho, and G. F. Martin (1988) Catecholaminergic innervation of the spinal cord in the North American opposum, Didelphis virginiana. Brain Behav. Evol. 32: 281–292.
- Poon, M. L. T. (1980) Induction of swimming in lamprey by L-DOPA and amino acids. J. Comp. Physiol. 136: 337–344.
- Ritchie, T. C., and R. B. Leonard (1983) Immunohistochemical studies on the distribution and origin of candidate peptidergic primary afferent neurotransmitters in the spinal cord of an elasmobranch fish; the atlantic stingray, Dasyatis sabina. J. Comp. Neurol. 213: 414–425.
- Ritchie, T. C., C. A., Livingston, M. G. Hughes, M. J. McAdoo, and R. B. Leonard (1983) The distribution of serotonin in the CNS of an elasmobranch fish: Immunocytochemical and biochemical studies in the atlantic stingray, Dasyatis sabina. J. Comp. Neurol. 221: 429–443.
- Roberts, B. L., and G. E. Meredith (1987) Immunohistochemical study of a dopaminergic system in the spinal cord of the ray, Raja radiata. Brain Res. 437: 171–175.
- Roberts B. L., G. E. Meredith, and S. Maslam (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat. Embryol. 180: 401–412.
- Rodriguez, E. M. (1976) The cerebrospinal fluid as a pathway in neuroendocrine integration. J. Endocrinol. 71: 407–443.
- Sandri, C., K., Akert, and M. V. L. Bennett (1978). Junctional complexes and variations in gap junctions between spinal cord ependymal cells of a teleost Sternarchus albifrons (Gymnotoidei). Brain Res. 143: 27–41.
- Schober, A., C. R., Malz, and D. L. Meyer (1993) Enzymehistochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mickiss). Neurosci. Lett. 151: 67–70.
- Schrøder, H. D. (1983) Localization of cholecystokinin-like immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs. J. Comp. Neurol. 217: 176–186.
- Seitz, R., J. Lohler, and G. Schwendemann (1981) Ependyma and meninges of the spinal cord of the mouse: A light and electron-microscopic study. Cell Tissue Res. 220: 61–72.
- Silver, R., P., Witkovsky, P. Horvath, V. Alones, C. J. Barnstable, and M. N. Lehman (1988) Coexpression of opsin- and VIP-like-immunoreactivity in CSF-contacting neurons of the avian brain. Cell. Tissue Res. 253: 189–198.
- Simpson, S. B. (1964) Analysis of tail regeneration in the lizard Lygosoma laterale. I Initiation of regeneration and cartilage differentiation: The role of the ependyma. J. Morphol. 114: 425–436.
- Singer, M., R. H., Norlander, and M. Egar (1979) Axonal guidance during embryogenesis and regeneration in the spinal cord of the newt: The blueprint hypothesis of neuronal pathway patterning. J. Comp. Neurol. 185: 1–22.
- Smeets, W. J. A. J., and A. González (1990) Are putative dopamine-accumulating cell bodies in the hypothalamic periventricular organ a primitive brain character of non-mammalian vertebrates? Neurosci. Lett. 114: 248–252.
- Smoller, C. G. (1965) Neurosecretory processes extending into third ventricle: Secretory or sensory? Science 147: 882–884.
- Strand, F. L., K. J., Rose, L. A. Zuccarelli, J. Kume, S. E. Alves, F. J. Antonawich, and L. Y. Garrett (1991) Neuropeptide hormones as neurotrophic factors. Physiol. Rev. 71: 1017–1046.
- Stuesse, S. L., and W. L. R. Cruce (1991) Immunohistochemical localization of serotoninergic, enkephalinergic, and catecholaminergic cells in the brainstem and diencephalon of a cartilaginous fish, Hydrolagus colliei. J. Comp. Neurol. 309: 1–14.
- Stuesse, S. L., and W. L. R. Cruce (1992) Distribution of tyrosine hydroxylase, serotonin, and leu-enkephalin immunoreactive cells in the brainstem of a shark, Squalus acanthias. Brain Behav. Evol. 39: 77–92.
- Turner, J. E., and M. Singer (1973) Some morphological and ultrastructural changes in the ependyma of the amputation stump during early regeneration of the tail in the lizard, Anolis carolinensis. J. Morphol. 140: 257–270.
- Uematsu, K., M., Shirasaki, and J. Storm-Mathisen (1993) GABA- and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio. J. Comp. Neurol. 332: 59–68.
- Vigh, B., and I. Vigh-Teichman (1973) Comparative ultrastructure of the CSF contacting neurons. Int. Rev. Cytol. 35: 189–251.
- Wallace, J. A., R. M., Mondragon, P. C. Allgood, T. J. Hoffman, and R. R. Maez (1987) Two populations of tyrosine hydroxylase-positive cells occur in the spinal cord of the chick embryo and hatchling. Neurosci. Lett. 80: 253–258.
- Williams, B. J., M. H., Droge, K. Hester, and R. B. Leonard (1981) Induction of swimming in the high spinal stingray by L-DOPA. Brain Res. 220: 208–213.
- Wolters, J. G., H. J. Ten Donkelaar, and A. A. J. Verhofstad (1984) Distribution of catecholamines in the brainstem and spinal cord of the lizard Varanus exanthematicus: An immunohistochemical study based on the use of antibodies to tyrosine hydroxylase. Neuroscience 13: 469–493.
- Yoshida, M., and M. Tanaka (1988) Existence of new dopaminergic terminal plexus in the rat spinal cord: Assessment by immunohistochemistry using anti-dopamine serum. Neurosci. Lett. 94: 5–9.
- Yulis, C. R., and K. Lederis (1988a) Occurrence of an anterior spinal cerebrospinal fluid-contacting urotensin II neuronal system in various fish species. Gen. Comp. Endocrinol. 79: 301–311.
- Yulis, C. R., and K. Lederis (1988b) Relationship between urotensin II- and somatostatin immunoreactive spinal cord neurons of Catostomus commersoni and Oncorhynchus kisutch. Cell Tissue Res. 254: 539–542.
- Zamora, A. J. (1978) The ependymal configuration in the spinal cord of urodeles. Anat. Embryol. 154: 67–82.
- Zamora, A. J., and D. Thiesson (1980) Tight junctions in the ependyma of the spinal cord of the urodele Pleueodeles walthi. Anat. Embryol. 160: 263–274.