Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with Gadofluorine M
Corresponding Author
Jörg Meding
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Bayer Schering Pharma AG, Contrast Media Research, Müllerstr. 178, D-13353 Berlin, Germany.Search for more papers by this authorMatthias Urich
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorKai Licha
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorMichael Reinhardt
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorBernd Misselwitz
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorZahi A. Fayad
Imaging Science Laboratories. Mount Sinai School of Medicine, New York, NY, USA
Search for more papers by this authorHanns-Joachim Weinmann
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorCorresponding Author
Jörg Meding
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Bayer Schering Pharma AG, Contrast Media Research, Müllerstr. 178, D-13353 Berlin, Germany.Search for more papers by this authorMatthias Urich
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorKai Licha
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorMichael Reinhardt
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorBernd Misselwitz
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorZahi A. Fayad
Imaging Science Laboratories. Mount Sinai School of Medicine, New York, NY, USA
Search for more papers by this authorHanns-Joachim Weinmann
Research Laboratories of Bayer Schering Pharma AG, Berlin, Germany
Search for more papers by this authorAbstract
As previously reported, Gadofluorine M-enhanced magnetic resonance imaging clearly demarcates atherosclerotic plaques from the normal vessel wall. To date, the underlying mechanism has remained unknown. Gadofluorine M is a gadolinium-containing macrocyclic contrast agent containing hydrophilic and hydrophobic moieties. To elucidate the mechanism of accumulation, fluorescently labeled and radioactively labeled derivates of Gadofluorine M were used to determine affinity and specificity of Gadofluorine M binding to blood serum and plaque components in vitro and for the distribution within the plaque of WHHL rabbits in vivo. Gadofluorine M binds to serum albumin, leading to a breakdown of micelles after intravenous injection. The affinity of Gadofluorine M to serum albumin is kD = 2 µmol/l. Gadofluorine then penetrates the atherosclerotic plaque while bound to albumin and then accumulates within the extracellular, fibrous parts of the plaque by binding to collagens, proteoglycans and tenascin, having the same affinity to these plaque constituents as to albumin. In contrast, weak binding was determined to LDL (kD = 2 mmol/l) and even no binding to hyaluronic acid. The driving force of binding and accumulation is the hydrophobic moiety of the molecules interacting with hydrophobic plaque materials. Thus, Gadofluorine M accumulates within the fibrous plaque or in the fibrous cap of a plaque containing high amounts of extracellular matrix components, but not in the lipid-rich areas. In combination with high-resolution MRI, Gadofluorine M might enable the detection of thin-cap fibroatheromas, also named the vulnerable plaque. Copyright © 2007 John Wiley & Sons, Ltd.
REFERENCES
- 1 Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s. Nature 1993; 362: 801–809.
- 2 Libby P. Inflammation in atherosclerosis. Nature 2002; 420: 868–874.
- 3 Libby P. Changing concepts of atherogenesis. J. Intern. Med. 2000; 247: 349–358.
- 4 Ross R, Wight TN, Strandness E, Thiele B. Human atherosclerosis. I. Cell constitution and characteristics of advanced lesions of the superficial femoral artery. Am. J. Pathol. 1984; 114: 79–93.
- 5 Wagner WD. Proteoglycan structure and function as related to atherosclerosis. Ann. NY Acad. Sci. 1985; 454: 52–68.
- 6 Wilcox JN, Scott NA. Potential role of the adventitia in arteritis and atherosclerosis. Int. J. Cardiol. 1996; 54 (Suppl.): S21–35.
- 7 Davies MJ, Thomas A. Thrombosis and acute coronary-artery lesions in sudden cardiac ischemic death. N Engl. J. Med. 1984; 310: 1137–1140.
- 8 Fuster V, Stein B, Ambrose JA, Badimon L, Badimon JJ, Chesebro JH. Atherosclerotic plaque rupture and thrombosis. Evolving concepts. Circulation 1990; 82: II47–59.
- 9 Kagan A, Livsic AM, Sternby N, Vihert AM. Coronary-artery thrombosis and the acute attack of coronary heart-disease. Lancet 1968; 2: 1199–1200.
- 10 Libby P, Geng YJ, Sukhova GK, Simon DI, Lee RT. Molecular determinants of atherosclerotic plaque vulnerability. Ann. NY Acad. Sci. 1997; 811: 134–142 [discussion 142–135].
- 11 Maseri A, Fuster V. Is there a vulnerable plaque? Circulation 2003; 107: 2068–2071.
- 12 Gruntzig A. Transluminal dilatation of coronary-artery stenosis. Lancet 1978; 1: 263.
- 13 Jakob H, Oelert H, Schmiedt W, Teusch P, Iversen S, Hake U, Schild H, Maass D. Initial clinical experience with an endoluminal spiral prosthesis for treating complicated venous thrombosis and preventing pulmonary embolism. Texas Heart Inst. J. 1989; 16: 87–94.
- 14 Arad Y, Spadaro LA, Goodman K, Lledo-Perez A, Sherman S, Lerner G, Guerci AD. Predictive value of electron beam computed tomography of the coronary arteries. 19-month follow-up of 1173 asymptomatic subjects. Circulation 1996; 93: 1951–1953.
- 15 Nieman K, Oudkerk M, Rensing BJ, van Ooijen P, Munne A, van Geuns RJ, de Feyter PJ. Coronary angiography with multi-slice computed tomography. Lancet 2001; 357: 599–603.
- 16 Barkhausen J, Ebert W, Heyer C, Debatin JF, Weinmann HJ. Detection of atherosclerotic plaque with Gadofluorine-enhanced magnetic resonance imaging. Circulation 2003; 108: 605–609.
- 17 Sirol M, Itskovich VV, Mani V, Aguinaldo JG, Fallon JT, Misselwitz B, Weinmann HJ, Fuster V, Toussaint JF, Fayad ZA. Lipid-rich atherosclerotic plaques detected by gadofluorine- enhanced in vivo magnetic resonance imaging. Circulation 2004; 109: 2890–2896.
- 18 Misselwitz B, Platzek J, Weinmann HJ, Early MR lymphography with gadofluorine M in rabbits. Radiology 2004; 231: 682–688.
- 19 Kolodgie FD, Burke AP, Farb A, Weber DK, Kutys R, Wight TN, Virmani R. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion. Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1642–1648.
- 20 Srinivasan SR, Radhakrishnamurthy B, Dalferes ER Jr, Berenson GS. Collagenase-solubilized lipoprotein—glycosaminoglycan complexes of human aortic fibrous plaque lesions. Atherosclerosis 1979; 34: 105–118.
- 21 Guyton JR. Clinical assessment of atherosclerotic lesions: emerging from angiographic shadows. Circulation 2002; 106: 1308–1309.
- 22 Wilson PW, D'Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97: 1837–1847.
- 23 Ridker PM, Hennekens CH, Buring JE, Rifai N. C-reactive protein and other markers of inflammation in the prediction of cardiovascular disease in women. New Engl. J. Med. 2000; 342: 836–843.
- 24 Ridker PM, Rifai N, Rose L, Buring JE, Cook NR. Comparison of C-reactive protein and low-density lipoprotein cholesterol levels in the prediction of first cardiovascular events. New Engl. J. Med. 2002; 347: 1557–1565.
- 25 Berman DS, Kiat H, Maddahi J. The new 99mTc myocardial perfusion imaging agents: 99mTc-sestamibi and 99mTc-teboroxime. Circulation 1991; 84: I7–21.
- 26 Ishida N, Sakuma H, Motoyasu M, Okinaka T, Isaka N, Nakano T, Takeda K. Noninfarcted myocardium: correlation between dynamic first-pass contrast-enhanced myocardial MR imaging and quantitative coronary angiography. Radiology 2003; 229: 209–216.
- 27 Nagel E, Klein C, Paetsch I, Hettwer S, Schnackenburg B, Wegscheider K, Fleck E. Magnetic resonance perfusion measurements for the noninvasive detection of coronary artery disease. Circulation 2003; 108: 432–437.
- 28 Ghersin E, Litmanovich D, Dragu R, Rispler S, Lessick J, Ofer A, Brook OR, Gruberg L, Beyar R, Engel A. 16-MDCT coronary angiography versus invasive coronary angiography in acute chest pain syndrome: a blinded prospective study. AJR Am. J. Roentgenol. 2006; 186: 177–184.
- 29 Kessler W, Laub G, Achenbach S, Ropers D, Moshage W, Daniel WG. Coronary arteries: MR angiography with fast contrast- enhanced three-dimensional breath-hold imaging—initial experience. Radiology 1999; 210: 566–572.
- 30
Stuber M,
Botnar RM,
Danias PG,
McConnell MV,
Kissinger KV,
Yucel EK,
Manning WJ.
Contrast agent-enhanced, free-breathing, three-dimensional coronary magnetic resonance angiography.
J. Magn. Reson. Imag.
1999;
10:
790–799.
10.1002/(SICI)1522-2586(199911)10:5<790::AID-JMRI25>3.0.CO;2-I CAS PubMed Web of Science® Google Scholar
- 31 Choudhury RP, Fuster V, Badimon JJ, Fisher EA, Fayad ZA. MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler. Thromb. Vasc. Biol. 2002; 22: 1065–1074.
- 32 DeGalan MR, Schwendner SW, Skinner RW, Longino MA, Gross M, Counsell RE. Iodine-125 cholesteryl iopanoate for measuring extent of atherosclerosis in rabbits. J. Nucl. Med. 1988; 29: 503–508.
- 33 Demacker PN, Dormans TP, Koenders EB, Corstens FH. Evaluation of indium-111-polyclonal immunoglobulin G to quantitate atherosclerosis in Watanabe heritable hyperlipidemic rabbits with scintigraphy: effect of age and treatment with antioxidants or ethinylestradiol. J. Nucl. Med. 1993; 34: 1316–1321.
- 34 Dinkelborg LM, Duda SH, Hanke H, Tepe G, Hilger CS, Semmler W. Molecular imaging of atherosclerosis using a technetium-99m-labeled endothelin derivative. J. Nucl. Med. 1998; 39: 1819–1822.
- 35 Johnson LL, Schofield L, Donahay T, Narula N, Narula J. 99mTc-annexin V imaging for in vivo detection of atherosclerotic lesions in porcine coronary arteries. J. Nucl. Med. 2005; 46: 1186–1193.
- 36 Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, Law MP, Schober O, Levkau B. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004; 109: 2554–2559.
- 37 Fayad ZA. Noncoronary and coronary atherothrombotic plaque imaging and monitoring of therapy by MRI. Neuroimag. Clin. N. Am. 2002; 12: 461–471.
- 38 Fayad ZA. MR imaging for the noninvasive assessment of atherothrombotic plaques. Magn. Reson. Imag. Clin. N. Am. 2003; 11: 101–113.
- 39 Lees AM, Lees RS, Schoen FJ, Isaacsohn JL, Fischman AJ, McKusick KA, Strauss HW. Imaging human atherosclerosis with 99mTc-labeled low density lipoproteins. Arteriosclerosis 1988; 8: 461–470.
- 40 Schoenhagen P, Tuzcu EM, Stillman AE, Moliterno DJ, Halliburton SS, Kuzmiak SA, Kasper JM, Magyar WA, Lieber ML, Nissen SE, White RD. Non-invasive assessment of plaque morphology and remodeling in mildly stenotic coronary segments: comparison of 16-slice computed tomography and intravascular ultrasound. Coron. Artery Dis. 2003; 14: 459–462.
- 41 Yuan C, Mitsumori LM, Beach KW, Maravilla KR. Carotid atherosclerotic plaque: noninvasive MR characterization and identification of vulnerable lesions. Radiology 2001; 221: 285–299.
- 42 Lederman RJ, Raylman RR, Fisher SJ, Kison PV, San H, Nabel EG, Wahl RL. Detection of atherosclerosis using a novel positron-sensitive probe and 18-fluorodeoxyglucose (FDG). Nucl. Med. Commun. 2001; 22: 747–753.
- 43 Fayad ZA, Fuster V. Characterization of atherosclerotic plaques by magnetic resonance imaging. Ann. NY Acad. Sci. 2000; 902: 173–186.
- 44 Morrisett J, Vick W, Sharma R, Lawrie G, Reardon M, Ezell E, Schwartz J, Hunter G, Gorenstein D. Discrimination of components in atherosclerotic plaques from human carotid endarterectomy specimens by magnetic resonance imaging ex vivo. Magn. Reson. Imag. 2003; 21: 465–474.
- 45 Yuan C, Skinner MP, Kaneko E, Mitsumori LM, Hayes CE, Raines EW, Nelson JA, Ross R. Magnetic resonance imaging to study lesions of atherosclerosis in the hyperlipidemic rabbit aorta. Magn. Reson. Imag. 1996; 14: 93–102.
- 46 Yuan C, Kerwin WS. MRI of atherosclerosis. J. Magn. Reson. Imag. 2004; 19: 710–719.
- 47 Ruehm SG, Corot C, Vogt P, Kolb S, Debatin JF. Magnetic resonance imaging of atherosclerotic plaque with ultrasmall superparamagnetic particles of iron oxide in hyperlipidemic rabbits. Circulation 2001; 103: 415–422.
- 48 Schmitz SA, Coupland SE, Gust R, Winterhalter S, Wagner S, Kresse M, Semmler W, Wolf KJ. Superparamagnetic iron oxide-enhanced MRI of atherosclerotic plaques in Watanabe hereditable hyperlipidemic rabbits. Invest. Radiol. 2000; 35: 460–471.
- 49 Aime S, Cabella C, Colombatto S, Geninatti Crich S, Gianolio E, Maggioni F. Insights into the use of paramagnetic Gd(III) complexes in MR-molecular imaging investigations. J. Magn. Reson. Imag. 2002; 16: 394–406.
- 50 Caravan P, Cloutier NJ, Greenfield MT, McDermid SA, Dunham SU, Bulte JW, Amedio JC Jr, Looby RJ, Supkowski RM, Horrocks WD Jr, McMurry TJ, Lauffer RB. The interaction of MS-325 with human serum albumin and its effect on proton relaxation rates. J. Am. Chem. Soc. 2002; 124: 3152–3162.
- 51 Fan J, Watanabe T. Cholesterol-fed and transgenic rabbit models for the study of atherosclerosis. J. Atheroscler. Thromb. 2000; 7: 26–32.
- 52 Shiomi M, Ito T, Yamada S, Kawashima S, Fan J. Development of an animal model for spontaneous myocardial infarction (WHHLMI rabbit). Arterioscler. Thromb. Vasc. Biol. 2003; 23: 1239–1244.
- 53 Kramer CM, Cerilli LA, Hagspiel K, DiMaria JM, Epstein FH, Kern JA. Magnetic resonance imaging identifies the fibrous cap in atherosclerotic abdominal aortic aneurysm. Circulation 2004; 109: 1016–1021.
- 54 Luo Y, Polissar N, Han C, Yarnykh V, Kerwin WS, Hatsukami TS, Yuan C. Accuracy and uniqueness of three in vivo measurements of atherosclerotic carotid plaque morphology with black blood MRI. Magn. Reson. Med. 2003; 50: 75–82.
- 55 Watanabe Y, Ito T, Shiomi M. The effect of selective breeding on the development of coronary atherosclerosis in WHHL rabbits. An animal model for familial hypercholesterolemia. Atherosclerosis 1985; 56: 71–79.
- 56 Meding J, Dinkelborg LM, Grieshaber MK, Semmler W. Targeting of endothelin receptors for molecular imaging of atherosclerosis in rabbits. J. Nucl. Med. 2002; 43: 400–405.
- 57 Reinard T, Jacobsen HJ. An inexpensive small volume equilibrium dialysis system for protein–ligand binding assays. Anal. Biochem. 1989; 176: 157–160.
- 58 Schumaker VN, Puppione DL. Sequential flotation ultracentrifugation. Meth. Enzymol. 1986; 128: 155–170.