Selective Recognition of Nucleoside Triphosphates in Water by Tetraphenylethene-Based Tetraimidazolium Cyclophanes†
Pingxia Wang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorYingjie Li
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorLingyu Zhao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorYanxia Yang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorXuhao Kang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorTing Yang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorFan Cao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorCorresponding Author
Lin Cheng
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Liping Cao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
E-mail: [email protected]; [email protected]Search for more papers by this authorPingxia Wang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorYingjie Li
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorLingyu Zhao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
These authors contributed equally.
Search for more papers by this authorYanxia Yang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorXuhao Kang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorTing Yang
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorFan Cao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
Search for more papers by this authorCorresponding Author
Lin Cheng
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Liping Cao
College of Chemistry and Materials Science, Northwest University, Xi’an, Shaanxi, 710069 China
E-mail: [email protected]; [email protected]Search for more papers by this author† Dedicated to the Special Issue of Supermolecular Self-Assembly and Functional Materials.
Comprehensive Summary
The design and development of selective recognition and sensing systems for biologically important nucleoside triphosphates (NTPs) have attracted significant attention in recent years, owing to their critical roles in cellular processes. In this study, we report the synthesis of two tetraphenylethene-based tetraimidazolium cyclophanes (1 and 2) through a one-step SN2 reaction. These cyclophanes are capable of recognizing NTPs by forming stable 1 : 1 host-guest complexes in aqueous solution. Of particular interest, cyclophane 1 demonstrates exceptional selectivity for guanosine triphosphate (GTP), distinguishing it from other nucleoside triphosphates such as ATP, CTP, and UTP. This selective recognition is accompanied by distinct and measurable fluorescence responses, which are significantly enhanced upon binding to GTP, enabling the potential for sensitive detection. This study highlights the potential of tetraphenylethene-based tetraimidazolium cyclophanes as a highly selective and sensitive sensor for GTP, offering new insights into the design of molecular systems for the recognition of biologically relevant nucleotides.
Supporting Information
Filename | Description |
---|---|
cjoc202401247-sup-0001-supinfo.pdfPDF document, 6.5 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Roy, B.; Depaix, A.; Périgaud, C.; Peyrottes, S. Recent trends in nucleotide synthesis. Chem. Rev. 2016, 116, 7854–7897.
- 2 Gourine, A. V.; Llaudet, E.; Dale, N.; Spyer, K. M. ATP is a mediator of chemosensory transduction in the central nervous system. Nature 2005, 436, 108–111.
- 3 Törnroth-Horsefield, S.; Neutze, R. Opening and closing the metabolite gate. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 19565–19566.
- 4 Varga, A.; Lionne, C.; Roy, B. Intracellular metabolism of nucleoside/ nucleotide analogues: a bottleneck to reach active drugs on HIV reverse transcriptase. Curr. Drug Metab. 2016, 17, 237–252.
- 5 Wang, Q.; Qi, Z.; Chen, M.; Qu, D. H. Out-of-equilibrium supramolecular self-assembling systems driven by chemical fuel. Aggregate 2021, 2, e110.
- 6 Ramaiah, D.; Neelakandan, P. P.; Nair, A. K.; Avirah, R. R. Functional cyclophanes: promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010, 39, 4158–4168.
- 7 Agafontsev, A. M.; Ravi, A.; Shumilova, T. A.; Oshchepkov, A. S.; Kataev, E. A. Molecular receptors for recognition and sensing of nucleotides. Chem. Eur. J. 2019, 25, 2684–2694.
- 8 Zhang, Q.; Yin, B.; Hao, J.; Ma, L.; Huang, Y.; Shao, X.; Li, C.; Chu, Z.; Yi, C.; Hong, S.; Wong, D.; Yang, M. An AIEgen/graphene oxide nanocomposite (AIEgen@GO)-based two-stage turn-on nucleic acid biosensor for rapid detection of SARS-CoV-2 viral sequence. Aggregate 2023, 4, e195.
- 9 Xu, Z.; Singh, N. J.; Lim, J.; Pan, J.; Kim, H. N.; Park, S.; Kim, K. S.; Yoon, J. Unique sandwich stacking of pyrene-adenine-pyrene for selective and ratiometric fluorescent sensing of ATP at physiological pH. J. Am. Chem. Soc. 2009, 131, 15528–15533.
- 10 Farshbaf, S.; Anzenbacher, P. Fluorimetric sensing of ATP in water by an imidazolium hydrazone based sensor. Chem. Commun. 2019, 55, 1770–1773.
- 11 Kwon, J. Y.; Singh, N. J.; Kim, H. N.; Kim, S. K.; Kim, K. S.; Yoon, J. Fluorescent GTP-sensing in aqueous solution of physiological pH. J. Am. Chem. Soc. 2004, 126, 8892–8893.
- 12 Nian, H.; Cheng, L.; Wang, L.; Zhang, H.; Wang, P.; Li, Y.; Cao, L. Hierarchical two-level supramolecular chirality of an achiral anthracene- based tetracationic nanotube in water. Angew. Chem. Int. Ed. 2021, 60, 15354–15358.
- 13 Maji, S.; Samanta, J.; Natarajan, R. Water-soluble triazolium covalent cages for ATP sensing. Chem. Eur. J. 2024, 30, e202303596.
- 14 Ye, R.; Cui, Q.; Yao, C.; Liu, R.; Li, L. Tunable fluorescence behaviors of a supramolecular system based on a fluorene derivative and cucurbit[8]uril and its application for ATP sensing. Phys. Chem. Chem. Phys. 2017, 19, 31306–31315.
- 15 Ramaiah, D.; Neelakandan, P. P.; Nair, A. K.; Avirah, R. R. Functional cyclophanes: Promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010, 39, 4158–4168.
- 16 Neelakandan, P. P.; Hariharan, M.; Ramaiah, D. A supramolecular ON-OFF-ON fluorescence assay for selective recognition of GTP. J. Am. Chem. Soc. 2006, 128, 11334–11335.
- 17 Yousuf, M.; Ahmed, N.; Shirinfar, B.; Miriyala, V. M.; Youn, I. S.; Kim, K. S. Precise tuning of cationic cyclophanes toward highly selective fluorogenic recognition of specific biophosphate anions. Org. Lett. 2014, 16, 2150–2153.
- 18 Shirinfar, B.; Ahmed, N.; Park, Y. S.; Cho, G.-S.; Youn, I. S.; Han, J.-K.; Nam, H. G.; Kim, K. S. Selective fluorescent detection of RNA in living cells by using imidazolium-based cyclophane. J. Am. Chem. Soc. 2013, 135, 90–93.
- 19 Duan, H.; Yang, T.; Li, Q.; Cao, F.; Wang, P.; Cao, L. Recognition and chirality sensing of guanosine-containing nucleotides by an achiral tetraphenylethene-based octacationic cage in water. Chin. Chem. Lett. 2024, 35, 108878.
- 20
Bazzicalupi, C.; Bencini, A.; Bianchi, A.; Fusi, V.; Giorgi, C.; Granchi, A.; Paoletti, P.; Valtancoli, B. Basicity properties of two paracyclophane receptors. Their ability in ATP and ADP recognition in aqueous solution. J. Chem. Soc. Perkin Trans. 2 1997, 775–781.
10.1039/a605481a Google Scholar
- 21 Shirinfar, B.; Ahmed, N.; Park, Y. S.; Cho, G.-S.; Youn, I. S.; Han, J.-K.; Nam, H. G.; Kim, K. S. Selective fluorescent detection of RNA in living cells by using imidazolium-based cyclophane. J. Am. Chem. Soc. 2013, 135, 90–93.
- 22 Li, W.; Gong, X.; Fan, X.; Yin, S.; Su, D.; Zhang, X.; Yuan, L. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. Chin. Chem. Lett. 2019, 30, 1775–1790.
- 23 Hu, Y.; Long, S.; Fu, H.; She, Y.; Xu, Z.; Yoon, J. Revisiting imidazolium receptors for the recognition of anions: highlighted research during 2010–2019. Chem. Soc. Rev. 2021, 50, 589–618.
- 24 You, L.; Zha, D.; Anslyn, E. V. Recent advances in supramolecular analytical chemistry using optical sensing. Chem. Rev. 2015, 115, 7840–7892.
- 25 Wu, J.; Kwon, B.; Liu, W.; Anslyn, E. V.; Wang, P.; Kim, J. S. Chromogenic/fluorogenic ensemble chemosensing systems. Chem. Rev. 2015, 115, 7893–7943.
- 26 Busschaert, N.; Caltagirone, C.; Van Rossom, W.; Gale, P. A. Applications of supramolecular anion recognition. Chem. Rev. 2015, 115, 8038–8155.
- 27 Rigolot, V.; Biot, C.; Lion, C. To view your biomolecule, click inside the cell. Angew. Chem. Int. Ed. 2021, 60, 23084–23105.
- 28 Duan, H.; Cao, F.; Zhang, M.; Gao, M.; Cao, L. On-off-on fluorescence detection for biomolecules by a fluorescent cage through host-guest complexation in water. Chin. Chem. Lett. 2022, 33, 2459–2463.
- 29 Cen, P.; Huang, J.; Jin, C.; Wang, J.; Wei, Y.; Zhang, H. Aggregation- induced emission luminogens for in vivo molecular imaging and theranostics in cancer. Aggregate 2023, 4, e352.
- 30 Akdeniz, A.; Caglayan, M. G.; Polivina, I.; Anzenbacher, P. Detection and quantification of ATP in human blood serum. Org. Biomol. Chem. 2016, 14, 7459–7462.
- 31 Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. Biosensing by luminogens with aggregation-induced emission characteristics. Chem. Soc. Rev. 2015, 44, 4228–4238.
- 32 Hewitt, S. H.; Butler, S. J. Application of lanthanide luminescence in probing enzyme activity. Chem. Commun. 2018, 54, 6635–6647.
- 33 Duong Duc, L.; Bhosale, S. V.; Jones, L. A.; Bhosale, S. V. Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces 2018, 10, 12189–12216.
- 34 Noguchi, T.; Shiraki, T.; Dawn, A.; Tsuchiya, Y.; Le, T. N. L.; Yamamoto, T.; Shinkai, S. Nonlinear fluorescence response driven by ATP-induced self-assembly of guanidinium-tethered tetraphenylethene. Chem. Commun. 2012, 48, 8090–8092.
- 35 Wang, J.; Cao, M.; Han, L.; Shangguan, P.; Liu, Y.; Zhong, Y.; Chen, C.; Wang, G.; Chen, X.; Lin, M.; Lu, M.; Luo, Z.; He, M.; Sung, H. H. Y.; Niu, G.; Lam, J. W. Y.; Shi, B.; Tang, B. Z. Blood–brain barrier-penetrative fluorescent anticancer agents triggering paraptosis and ferroptosis for glioblastoma therapy. J. Am. Chem. Soc. 2024, 146, 28783–28794.
- 36 Wang, H.; Li, Q.; Alam, P.; Bai, H.; Bhalla, V.; Bryce, M. R.; Cao, M.; Chen, C.; Chen, S.; Chen, X.; Chen, Y.; Chen, Z.; Dang, D.; Ding, D.; Ding, S.; Duo, Y.; Gao, M.; He, W.; He, X.; Hong, X.; Hong, Y.; Hu, J.-J.; Hu, R.; Huang, X.; James, T. D.; Jiang, X.; Konishi, G.-i.; Kwok, R. T. K.; Lam, J. W. Y.; Li, C.; Li, H.; Li, K.; Li, N.; Li, W.-J.; Li, Y.; Liang, X.-J.; Liang, Y.; Liu, B.; Liu, G.; Liu, X.; Lou, X.; Lou, X.-Y.; Luo, L.; McGonigal, P. R.; Mao, Z.-W.; Niu, G.; Owyong, T. C.; Pucci, A.; Qian, J.; Qin, A.; Qiu, Z.; Rogach, A. L.; Situ, B.; Tanaka, K.; Tang, Y.; Wang, B.; Wang, D.; Wang, J.; Wang, W.; Wang, W.-X.; Wang, W.-J.; Wang, X.; Wang, Y.-F.; Wu, S.; Wu, Y.; Xiong, Y.; Xu, R.; Yan, C.; Yan, S.; Yang, H.-B.; Yang, L.-L.; Yang, M.; Yang, Y.-W.; Yoon, J.; Zang, S.-Q.; Zhang, J.; Zhang, P.; Zhang, T.; Zhang, X.; Zhang, X.; Zhao, N.; Zhao, Z.; Zheng, J.; Zheng, L.; Zheng, Z.; Zhu, M.-Q.; Zhu, W.-H.; Zou, H.; Tang, B. Z. Aggregation-induced emission (AIE), life and health. ACS Nano 2023, 17, 14347–14405.
- 37 Xia, Q.; Zhang, Y.; Li, Y.; Li, Y.; Li, Y.; Feng, Z.; Fan, X.; Qi-an, J.; Lin, H. A historical review of aggregation-induced emission from 2001 to 2020: A bibliometric analysis. Aggregate 2022, 3, e152.
- 38 Nie, X.; Huang, W.; Zhou, D.; Wang, T.; Wang, X.; Chen, B.; Zhang, X.; Zhang, G. Kinetic and thermodynamic control of tetra-phenylethene aggregation-induced emission behaviors. Aggregate 2022, 3, e165.
- 39 Huang, X.; Li, J.; Tang, H.; Guo, M.; Wang, X.; Wang, X.; Wang, X.; Tang, M.; Zhang, F.; Zhang, Y.; Li, X.; Qing, G. Unique three-component co-assembly among AIE gen, L-GSH, and Ag+ for the formation of helical nanowires. Aggregate 2023, 4, e272.
- 40 Yan, X.; Cook, T. R.; Wang, P.; Huang, F.; Stang, P. J. Highly emissive platinum (II) metallacages. Nat. Chem. 2015, 7, 342–348.
- 41 Plajer, A. J.; Percastegui, E. G.; Santella, M.; Rizzuto, F. J.; Gan, Q.; Laursen, B. W.; Nitschke, J. R. Fluorometric recognition of nucleotides within a water-soluble tetrahedral capsule. Angew. Chem. Int. Ed. 2019, 58, 4200–4204.
- 42 Yu, G.; Zhou, J.; Shen, J.; Tang, G.; Huang, F. Cationic pillar [6] arene/ ATP host-guest recognition: selectivity, inhibition of ATP hydrolysis, and application in multidrug resistance treatment. Chem. Sci. 2016, 7, 4073–4078.
- 43 Ahmed, N.; Shirinfar, B.; Geronimo, I.; Kim, K. S. Fluorescent imidazolium-based cyclophane for detection of guanosine-5'-triphosphate and I- in aqueous solution of physiological pH. Org. Lett. 2011, 13, 5476–5479.
- 44 Wang, P.; Liu, K.; Ma, H.; Nian, H.; Li, Y.; Li, Q.; Cheng, L.; Cao, L. Synthesis and aqueous anion recognition of an imidazolium-based nonacationic cup. Chem. Commun. 2021, 57, 13377–13380.
- 45 Zhu, J. L.; Xu, L.; Ren, Y. Y.; Zhang, Y.; Liu, X.; Yin, G. Q.; Sun, B.; Cao, X.; Chen, Z.; Zhao, X. L.; Tan, H.; Chen, J.; Li, X.; Yang, H. B. Switchable organoplatinum metallacycles with high quantum yields and tunable fluorescence wavelengths. Nat. Commun. 2019, 10, 4285.
- 46 http://supramolecular.org
- 47 Hibbert, D. B.; Thordarson, P. The death of the job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 2016, 52, 12792.