Unlocking the Potential of Rare Earth-Enriched Aluminum Oxo Clusters for Enhanced Dielectric Properties
Ruiduan Ji
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoyu Liu
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007 China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorHaizhou Pei
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Wei-Hui Fang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Weiguo Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorRuiduan Ji
College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108 China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorXiaoyu Liu
College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian, 350007 China
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
These authors contributed equally to this work.
Search for more papers by this authorHaizhou Pei
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorCorresponding Author
Wei-Hui Fang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Weiguo Huang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
E-mail: [email protected]; [email protected]Search for more papers by this authorJian Zhang
State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350002 China
Fujian College, University of Chinese Academy of Sciences, Fuzhou, Fujian, 350002 China
Search for more papers by this authorComprehensive Summary
This study highlights the innovative use of increased rare earth elements to enhance the dielectric properties of materials and devices. The AlOC-129Ln series, features the highest number of rare earth dopants in aluminum oxo clusters to date. The trivalent ions in AlOC-129Ln impart a high dipole moment, significantly elevating the dielectric constant (k) of the doped polymer films. AlOC-129Ce, in particular, exhibits the largest molecular size, which enhances interfacial effects and achieves a relative dielectric constant four times greater than that of undoped polymers and 1.5 times higher than those with single rare earth dopants. The substantial molecular size (~2.5 nm) and robust charge scattering and trapping capabilities of AlOC-129Ln reduce dielectric loss by up to 50% at high frequencies. Additionally, its excellent solution processability enhances breakdown strength by 147%, ensuring superior electrical stability. This research demonstrates the versatility of the cluster doping strategy in effectively balancing dielectric constant and loss, unveiling the promising potential of solution-processable cluster materials in electronic devices.
Supporting Information
Filename | Description |
---|---|
cjoc202401181-sup-0001-supinfo.pdfPDF document, 4.2 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Huang, X.; Liu, C.; Zhou, P. 2D semiconductors for specific electronic applications: from device to system. npj 2D Mater. Appl. 2022, 6, 1–19.
- 2 Nawaz, A.; Merces, L.; Ferro, L. M. M.; Sonar, P.; Bufon, C. C. B. Impact of Planar and Vertical Organic Field-Effect Transistors on Flexible Electronics. Adv. Mater. 2023, 35, 202204804.
- 3 Wang, Z.-D.; Liang, S.; Yang, Y.; Liu, Z.-N.; Duan, X.-Z.; Li, X.; Liu, T.; Zang, H.-Y. Complex phase transitions and phase engineering in the aqueous solution of a polyoxovanadate cluster. Nat. Commun. 2023, 14, 2767.
- 4 Söll, A.; Lopriore, E.; Ottesen, A.; Luxa, J.; Pasquale, G.; Sturala, J.; Hájek, F.; Jarý, V.; Sedmidubský, D.; Mosina, K.; Sokolović, I.; Rasouli, S.; Grasser, T.; Diebold, U.; Kis, A.; Sofer, Z. High-κ Wide-Gap Layered Dielectric for Two Dimensional van der Waals Heterostructures. ACS Nano 2024, 18, 10397–10406.
- 5 Rahman, M. M.; Puthirath, A. B.; Adumbumkulath, A.; Tsafack, T.; Robatjazi, H.; Barnes, M.; Wang, Z.; Kommandur, S.; Susarla, S.; Sajadi, S. M.; Salpekar, D.; Yuan, F.; Babu, G.; Nomoto, K.; Islam, S. M.; Verduzco, R.; Yee, S. K.; Xing, H. G.; Ajayan, P. M. Fiber Reinforced Layered Dielectric Nanocomposite. Adv. Funct. Mater. 2019, 29, 201900056.
- 6 Govindarajan, S.; Böscke, T. S.; Sivasubramani, P.; Kirsch, P. D.; Lee, B. H.; Tseng, H. H.; Jammy, R.; Schröder, U.; Ramanathan, S.; Gnade, B. E. Higher permittivity rare earth doped HfO2 for sub-45-nm metal- insulator semiconductor devices. Appl. Phys. Lett. 2007, 91, 062906–062901.
- 7 Kanungo, S.; Ahmad, G.; Sahatiya, P.; Mukhopadhyay, A.; Chattopadhyay, S. 2D materials-based nanoscale tunneling field effect transistors: current developments and future prospects. npj 2D Mater. Appl. 2022, 6, 1–29.
- 8 Palumbo, F.; Wen, C.; Lombardo, S.; Pazos, S.; Aguirre, F.; Eizenberg, M.; Hui, F.; Lanza, M. A Review on Dielectric Breakdown in Thin Dielectrics: Silicon Dioxide, High-k, and Layered Dielectrics. Adv. Funct. Mater. 2019, 30, 1900657.
- 9 Wu, X.; Feng, S.; Shen, J.; Huang, W.; Li, C.; Li, C.; Sui, Y.; Huang, W. Nonvolatile Transistor Memory Based on a High-k Dielectric Polymer Blend for Multilevel DataStorage, Encryption, and Protection. Chem. Mater. 2020, 32, 3641–3650.
- 10 Fang, W.-H.; Xie, Y.-L.; Wang, S.-T.; Liu, Y. -J.; Zhang, J. Induced Aggregation, Solvent Regulation, and Supracluster Assembly of Aluminum Oxo Clusters. Acc. Chem. Res. 2024, 57, 1458–1466.
- 11 Yao, S.-Y.; Fang, W.-H.; Sun, Y.-Y.; Wang, S.-T.; Zhang, J. Mesoporous Assembly of Aluminum Molecular Rings for Iodine Capture. J. Am. Chem. Soc. 2021, 143, 2325–2330.
- 12 Chen, X.; Sun, Y. F.; Wu, X.; Shi, S.; Wang, Z.; Zhang, J.; Fang, W. H.; Huang, W. Breaking the Trade-Off Between Polymer Dielectric Constant and Loss via Aluminum Oxo Macrocycle Dopants for High-Performance Neuromorphic Electronics. Adv. Mater. 2023, 35, 202306260.
- 13
Liu, X.-Y.; Yu, Y.; Sun, Y.-F.; Fang, W.-H.; Zhang, J. Tetrameric cubane Al9Ln7 (Ln = Ce, Pr, Nd) clusters as aldol addition catalysts. Polyoxometalates 2023, 2, 9140045.
10.26599/POM.2023.9140045 Google Scholar
- 14 Evans, W. J.; Forrestal, K. J.; Ansari, M. A.; Ziller, J. W. Reactions of Olefin Polymerization Activators with Complexed Pentamethylcyclopentadienyl Ligands: Abstraction of Tetramethylfulvalene. J. Am. Chem. Soc. 1998, 120, 2180–2181.
- 15 Zhao, X.-Q.; Wang, J.; Zhang, F.-H.; Sun, M.-M.; Li, Y.-C.; Wang, M.-M.; Tang, Y.-F. Significant magnetocaloric effect in a ferromagnetic {CrIII 2GdIII 3} cluster. Polyhedron 2020, 179, 114385.
- 16 Moinet, E. C.; Wolf, B. M.; Tardif, O.; Maichle-Mössmer, C.; Anwander, R. Divalent Lanthanide Tetraisobutylaluminates:Reactivity and Living Isoprene Polymerization. Angew. Chem. Int. Ed. 2023, 62, e202219316.
- 17 Sun, Y.-F.; Liu, Y.-J.; Wang, S.-T.; Liu, X.-Y.; Ma, C.; Fang, W.-H.; Zhang, J. Loading single lanthanide ion into aluminum molecular rings: water-stable sodalite cage for removal of nuclear-industry anions. Sci. China Chem. 2023, 66, 1384–1393.
- 18 Sun, Q.-R.; Luo, D.; Lv, Y.; Fang, W.-H.; Zhang, J. Synthesis and photoluminescence properties of polymer chains based on pre-designed heterometallic Al4Ln4 molecular rings. Chem. Commun. 2024, 60, 7574–7577.
- 19 Li, G. Artificial optical synaptic devices with ultra-low power consumption. Light Sci. Appl. 2023, 12, 24.
- 20 Shen, J.; Liang, B.; Dong, Y.; Feng, S.; Huang. W.; Electret Molecular Configuration Induced Programmable Photonic Memory for Advanced Logic Operation and Data Encryption. Adv. Funct. Mater. 2023, 33, 2213341.
- 21 Wang, X.; Lu, Y.; Zhang, J.; Zhang, S.; Chen, T.; Ou, Q.; Huang, J. Highly Sensitive Artificial Visual Array Using Transistors Based on Porphyrins and Semiconductors. Small 2021, 17, 2005491.
- 22 Zhu, C.; Liu, H.; Wang, W.; Xiang, L.; Jiang, J.; Shuai, Q.; Yang, X.; Zhang, T.; Zheng, B.; Wang, H.; Li, D.; Pan, A. Optical synaptic devices with ultra-low power consumption for neuromorphic computing. Light Sci. Appl. 2022, 11, 337.
- 23 Zhang, J.; Guo, P.; Guo, Z.; Li, L.; Sun, T.; Liu, D.; Tian, L.; Zu, G.; Xiong, L.; Zhang, J.; Huang, J. Retina-Inspired Artificial Synapses with Ultraviolet to Near-Infrared Broadband Responses for Energy-Efficient Neuromorphic Visual Systems. Adv. Funct. Mater. 2023, 33, 2370197.
- 24 Wu, X.; Dai, D.; Ling, Y.; Chen, S.; Huang, C.; Feng, S.; Huang, W. Organic Single-Crystal Transistor with Unique Photo Responses and Its Application as Light-Stimulated Synaptic Devices. ACS Appl. Mater. Interfaces 2020, 12, 30627.
- 25 Chen, K.; Hu, H.; Song, I.; Gobeze, H. B.; Lee, W.-J.; Abtahi, A.; Schanze, K. S.; Mei, J. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photonics 2023, 17, 629.
- 26 Zhu, X.; Gao, C.; Ren, Y.; Zhang, X.; Li, E.; Wang, C.; Yang, F.; Wu, J.; Hu, W.; Chen, H. High-contrast bidirectional optoelectronic synapses based on 2D molecular crystal heterojunctions for motion detection. Adv. Mater. 2023, 35, 2301468.
- 27 Dang, Z.; Guo, F.; Zhao, Y.; Jin, K.; Jie, W.; Hao, J. Ferroelectric Modulation of ReS₂-Based Multifunctional Optoelectronic Neuromorphic Devices for Wavelength-Selective Artificial Visual System. Adv. Funct. Mater. 2024, 34, 2400105.
- 28 Wu, X.; Shi, S.; Liang, B.; Dong, Y.; Yang, R.; Ji, R.; Wang, Z.; Huang, W. Ultralow-power optoelectronic synaptic transistors based on polyzwitterion dielectrics for in-sensor reservoir computing. Sci. Adv. 2024, 10, eadn4524.
- 29 Wu, X.; Wang, S.; Huang, W.; Dong, Y.; Wang, Z.; Huang, W. Wearable in-sensor reservoir computing using optoelectronic polymerswiththrough space charge-transport characteristics for multi- task learning. Nat. Commun. 2023, 14, 468
- 30 Deng, Y.; Liu, S.; Ma, X.; Guo, S.; Zhai, B.; Zhang, Z.; Li, M.; Yu, Y.; Hu, W.; Yang, H.; Kapitonov, Y.; Han, J.; Wu, J.; Li, Y.; Zhai, T. Intrinsic Defect-Driven Synergistic Synaptic Heterostructures for Gate-Free Neuromorphic Phototransistors. Adv. Mater. 2024, 36, 2309940.
- 31 Zhang, T.; Fan, C.; Hu, L.; Zhuge, F.; Pan, X.; Ye, Z. A Reconfigurable All-Optical-Controlled Synaptic Device for Neuromorphic Computing Applications. ACS Nano 2024, 18, 16236.
- 32 Liu, Y.; Chen, Y.; Wu, H.; Chen, X.; Wang, D.; Zhang, X.; Zheng, S.; Ling, B.; Chen, J.; Dong, Y. Repairable, Recyclable, and Regenerable Macrocycle Organic Polymer. Chin. J. Chem. 2023, 41, 1497–1503.
- 33 Liang, B.; An, W.; Liu, J.; Dong, Y.; Feng, S.; Huang, W. Ultralong Organic Phosphorescence of Triazatruxene Derivatives for Dynamic Data Encryption and Anti-counterfeiting. Chin. J. Chem. 2023, 41, 2261–2268.
- 34 Chen, Y.; Chen, J.; Wu, H.; Liu, Y. ; Wang, D.; Huang, W. Dynamically Securing the Data by 1O2 Sensitization of Fluorescent Composites with a High Latency and Uncrackable Features. Chin. J. Chem. 2024, 42, 1651–1658.