Temperature-Responsive Photoluminescence of 1D Chiral Lead Halide Perovskites with Highly Anisotropic Second Harmonic Generation
Ya-Si Fang
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorYi-Fan Guo
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorXiao-Gang Chen
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Zhong-Xia Wang
College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan Qin
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYa-Si Fang
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorYi-Fan Guo
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorXiao-Gang Chen
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
Search for more papers by this authorCorresponding Author
Zhong-Xia Wang
College of Chemistry and Chemical Engineering, Gannan Normal University, Ganzhou, Jiangxi, 341000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yan Qin
Ordered Matter Science Research Center, Nanchang University, Nanchang, Jiangxi, 330031 China
E-mail: [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Chiral perovskites provide an ideal platform for the construction of linear and nonlinear optical materials due to their diverse chemical variability, structural tunability, and intrinsic non-centrosymmetricity which have broad application prospects for next-generation optoelectronic devices. In this work, a pair of 1D chiral lead halide perovskites (R/S-4MeOPEA)PbCl3 (4MeOPEA = (4-methoxyphenyl)ethylamine) were synthesized, and characterized systematically. Crystal structure analysis revealed that the one-dimensional (1D) inorganic chain formed by face-shared lead chloride octahedra was separated by the chiral organic spacers. The distorted octahedra endows them with broadband bluish-white light emission centered covering the range 350—700 nm with a width of 104 nm. In addition, the highly anisotropic second-harmonic generation (SHG) with a near unity polarization ratio was observed. This work presents a fresh example of 1D chiral perovskite with exotic linear and nonlinear optical properties, which could provide a new footstone for further optoelectronic devices.
Supporting Information
Filename | Description |
---|---|
cjoc202401118-sup-0001-supinfo.pdfPDF document, 1.7 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.
- 2 Metcalf, I.; Sidhik, S.; Zhang, H.; Agrawal, A.; Persaud, J.; Hou, J.; Even, J.; Mohite, A. D. Synergy of 3D and 2D Perovskites for Durable, Efficient Solar Cells and Beyond. Chem. Rev. 2023, 123, 9565–9652.
- 3 Sutherland, B. R.; Sargent, E. H. Perovskite Photonic Sources. Nat. Photonics 2016, 10, 295–302.
- 4 Veldhuis, S. A.; Boix, P. P.; Yantara, N.; Li, M.; Sum, T. C.; Mathews, N.; Mhaisalkar, S. G. Perovskite Materials for Light-Emitting Diodes and Lasers. Adv. Mater. 2016, 28, 6804–6834.
- 5 Li, S.; Xie, X.; Huang, F.; Shu, L.; Liu, L.; Wang, C.; Yang, Y.; Li, R. Recent Application and Progress of Metal Halide Perovskite Photodetector on Flexible Substrates. Chin. J. Chem. 2023, 41, 3689–3702.
- 6 Li, X.; Wu, F.; Yao, Y.; Wu, W.; Ji, C.; Li, L.; Sun, Z.; Luo, J.; Liu, X. Robust Spin-Dependent Anisotropy of Circularly Polarized Light Detection from Achiral Layered Hybrid Perovskite Ferroelectric Crystals. J. Am. Chem. Soc. 2022, 144, 14031–14036.
- 7 Zhang, Q.; Shang, Q.; Su, R.; Do, T. T. H.; Xiong, Q. Halide Perovskite Semiconductor Lasers: Materials, Cavity Design, and Low Threshold. Nano Lett. 2021, 21, 1903–1914.
- 8 Li, W.; Wang, Z.; Deschler, F.; Gao, S.; Friend, R. H.; Cheetham, A. K. Chemically Diverse and Multifunctional Hybrid Organic–Inorganic Perovskites. Nat. Rev. Mater. 2017, 2, 16099.
- 9 Saparov, B.; Mitzi, D. B. Organic–Inorganic Perovskites: Structural Versatility for Functional Materials Design. Chem. Rev. 2016, 116, 4558–4596.
- 10 Mao, L.; Stoumpos, C. C.; Kanatzidis, M. G. Two-Dimensional Hybrid Halide Perovskites: Principles and Promises. J. Am. Chem. Soc. 2019, 141, 1171–1190.
- 11 Zhang, T.; Ding, K.; Li, J. Y.; Du, G. W.; Chu, L. L.; Zhang, Y.; Fu, D. W. Hydrogen-Bonded Engineering Enhancing Phase Transition Temperature in Molecular Perovskite Ferroelastic. Chin. J. Chem. 2022, 40, 1559–1565.
- 12 Wei, L.; Liu, Y.; Yang, T.; Rong, H.; Zhao, X.; Zhang, J.; Luo, J.; Sun, Z. Photo-Excited Switching and Enhancement of Dielectric Properties in Two-Dimensional Double Perovskite Phase Transition Thin Films. Chin. J. Chem. 2024, 42, 3122–3128.
- 13 Quan, L. N.; García De Arquer, F. P.; Sabatini, R. P.; Sargent, E. H. Perovskites for Light Emission. Adv. Mater. 2018, 30, 1801996.
- 14 Blancon, J. C.; Even, J.; Stoumpos, C. C.; Kanatzidis, M. G.; Mohite, A. D. Semiconductor Physics of Organic–Inorganic 2D Halide Perovskites. Nat. Nanotechnol. 2020, 15, 969–985.
- 15 Li, X.; Hoffman, J. M.; Kanatzidis, M. G. The 2D Halide Perovskite Rulebook: How the Spacer Influences Everything from the Structure to Optoelectronic Device Efficiency. Chem. Rev. 2021, 121, 2230–2291.
- 16 Katan, C.; Mercier, N.; Even, J. Quantum and Dielectric Confinement Effects in Lower-Dimensional Hybrid Perovskite Semiconductors. Chem. Rev. 2019, 119, 3140–3192.
- 17 Smith, M. D.; Karunadasa, H. I. White-Light Emission from Layered Halide Perovskites. Acc. Chem. Res. 2018, 51, 619–627.
- 18 Dohner, E. R.; Hoke, E. T.; Karunadasa, H. I. Self-Assembly of Broadband White-Light Emitters. J. Am. Chem. Soc. 2014, 136, 1718–1721.
- 19 Dohner, E. R.; Jaffe, A.; Bradshaw, L. R.; Karunadasa, H. I. Intrinsic White-Light Emission from Layered Hybrid Perovskites. J. Am. Chem. Soc. 2014, 136, 13154–13157.
- 20 Blancon, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y.; Tretiak, S.; Ajayan, P. M.; Kanatzidis, M. G.; Even, J.; Crochet, J. J.; Mohite, A. D. Extremely Efficient Internal Exciton Dissociation through Edge States in Layered 2D Perovskites. Science 2017, 355, 1288–1292.
- 21 Qin, Y.; Li, Z. G.; Gao, F. F.; Chen, H.; Li, X.; Xu, B.; Li, Q.; Jiang, X.; Li, W.; Wu, X.; Quan, Z.; Ye, L.; Zhang, Y.; Lin, Z.; Pedesseau, L.; Even, J.; Lu, P.; Bu, X.-H. Dangling Octahedra Enable Edge States in 2D Lead Halide Perovskites. Adv. Mater. 2022, 34, 2201666.
- 22 Kepenekian, M.; Robles, R.; Katan, C.; Sapori, D.; Pedesseau, L.; Even, J. Rashba and Dresselhaus Effects in Hybrid Organic–Inorganic Perovskites: From Basics to Devices. ACS Nano 2015, 9, 11557–11567.
- 23 Li, Z. G.; Dong, X. H.; Song, H. P.; Huang, S. S.; Hu, H.; Zhang, Y.; Wu, X.; Li, W.; Bu, X. H. Chirality-Mediated 1D-to-2D Phase Transition in Hybrid Lead Halide Perovskites. J. Am. Chem. Soc. 2024, 146, 27946–27955.
- 24 Ahn, J.; Ma, S.; Kim, J. Y.; Kyhm, J.; Yang, W.; Lim, J. A.; Kotov, N. A.; Moon, J. Chiral 2D Organic Inorganic Hybrid Perovskite with Circular Dichroism Tunable over Wide Wavelength Range. J. Am. Chem. Soc. 2020, 142, 4206–4212.
- 25 Dang, Y. Y.; Liu, X. L.; Sun, Y. J.; Song, J. W.; Hu, W. P.; Tao, X. T. Bulk Chiral Halide Perovskite Single Crystals for Active Circular Dichroism and Circularly Polarized Luminescence. J. Phys. Chem. Lett. 2020, 11, 1689–1696.
- 26 Ma, J.; Fang, C.; Chen, C.; Jin, L.; Wang, J.; Wang, S.; Tang, J.; Li, D. Chiral 2D Perovskites with a High Degree of Circularly Polarized Photoluminescence. ACS Nano 2019, 13, 3659–3665.
- 27 Kim, Y. H.; Zhai, Y.; Lu, H.; Pan, X.; Xiao, C.; Gaulding, E. A.; Harvey, S. P.; Berry, J. J.; Vardeny, Z. V.; Luther, J. M.; Beard, M. C. Chiral-Induced Spin Selectivity Enables a Room-Temperature Spin Light-Emitting Diode. Science 2021, 371, 1129–1133.
- 28 Cheng, P.; Jia, X.; Chai, S.; Li, G.; Xin, M.; Guan, J.; Han, X.; Han, W.; Zeng, S.; Zheng, Y.; Xu, J.; Bu, X. H. Boosted Second Harmonic Generation of a Chiral Hybrid Lead Halide Resonant to Charge Transfer Exciton from Metal Halide Octahedra to Ligand. Angew. Chem. Int. Ed. 2024, 63, e202400644.
- 29 Yuan, C.; Li, X.; Semin, S.; Feng, Y.; Rasing, T.; Xu, J. Chiral Lead Halide Perovskite Nanowires for Second-Order Nonlinear Optics. Nano Lett. 2018, 18, 5411–5417.
- 30 Guo, Z.; Li, J.; Liu, R.; Yang, Y.; Wang, C.; Zhu, X.; He, T. Spatially Correlated Chirality in Chiral Two-Dimensional Perovskites Revealed by Second-Harmonic-Generation Circular Dichroism Microscopy. Nano Lett. 2023, 23, 7434–7441.
- 31 Peng, H.; Qi, J. C.; Liu, Y. S.; Zhang, J. M.; Liao, W. Q.; Xiong, R. G. Homochirality in Ferroelectrochemistry. Chin. J. Chem. 2024, 42, 1133–1144.
- 32 Ye, H. Y.; Tang, Y. Y.; Li, P. F.; Liao, W. Q.; Gao, J. X.; Hua, X. N.; Cai, H.; Shi, P. P.; You, Y. M.; Xiong, R. G. Metal-Free Three-Dimensional Perovskite Ferroelectrics. Science 2018, 361, 151–155.
- 33 Li, L. S.; Tan, Y. H.; Wei, W. J.; Gao, H. Q.; Tang, Y. Z.; Han, X. B. Chiral Switchable Low-Dimensional Perovskite Ferroelectrics. ACS Appl. Mater. Interfaces 2021, 13, 2044–2051.
- 34 Yang, C. K.; Chen, W. N.; Ding, Y. T.; Wang, J.; Rao, Y.; Liao, W. Q.; Tang, Y. Y.; Li, P. F.; Wang, Z. X.; Xiong, R. G. The First 2D Homochiral Lead Iodide Perovskite Ferroelectrics: [R- and S-1-(4-Chlorophenyl)ethylammonium]2PbI4. Adv. Mater. 2019, 31, 1808088.
- 35 Guo, T. M.; Gao, F. F.; Gong, Y. J.; Li, Z. G.; Wei, F. X.; Li, W.; Bu, X. H. Chiral Two-Dimensional Hybrid Organic–Inorganic Perovskites for Piezoelectric Ultrasound Detection. J. Am. Chem. Soc. 2023, 145, 22475–22482.
- 36 Wang, C. F.; Shi, C.; Zheng, A. Y.; Wu, Y. L.; Ye, L.; Wang, N.; Ye, H. Y.; Ju, M. G.; Duan, P. F.; Wang, J. L.; Zhang, Y. Achieving Circularly Polarized Luminescence and Large Piezoelectric Response in Hybrid Rare-Earth Double Perovskite by a Chirality Induction Strategy. Mater. Horiz. 2022, 9, 2450–2459.
- 37 Ahn, J.; Lee, E.; Tan, J.; Yang, W.; Kim, B.; Moon, J. A New Class of Chiral Semiconductors: Chiral-Organic-Molecule-Incorporating Organic–Inorganic Hybrid Perovskites. Mater. Horiz. 2017, 4, 851–856.
- 38 Billing, D. G.; Lemmerer, A. Bis [(S)-Β-Phenethylammonium] Tribromoplumbate (II). Acta Crystallogr., Sect. E: Struct. Rep. Online 2003, 59, m381–m383.
- 39 Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L. N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G. Spin Control in Reduced- Dimensional Chiral Perovskites. Nat. Photonics 2018, 12, 528–533.
- 40 Chen, C.; Gao, L.; Gao, W.; Ge, C.; Du, X.; Li, Z.; Yang, Y.; Niu, G.; Tang, J. Circularly Polarized Light Detection Using Chiral Hybrid Perovskite. Nat. Commun. 2019, 10, 1927.
- 41 Qin, Y.; Gao, F. F.; Qian, S.; Guo, T. M.; Gong, Y. J.; Li, Z. G.; Su, G. D.; Gao, Y.; Li, W.; Jiang, C.; Lu, P.; Bu, X. H. Multifunctional Chiral 2D Lead Halide Perovskites with Circularly Polarized Photoluminescence and Piezoelectric Energy Harvesting Properties. ACS Nano 2022, 16, 3221–3230.
- 42 Spackman, P. R.; Turner, M. J.; Mckinnon, J. J.; Wolff, S. K.; Grimwood, D. J.; Jayatilaka, D.; Spackman, M. A. Crystalexplorer: A Program for Hirshfeld Surface Analysis, Visualization and Quantitative Analysis of Molecular Crystals. J. Appl. Crystallogr. 2021, 54, 1006–1011.
- 43 Robinson, K.; Gibbs, G. V.; Ribbe, P. H. Quadratic Elongation: A Quantitative Measure of Distortion in Coordination Polyhedra. Science 1971, 172, 567–570.
- 44 Mao, L.; Guo, P.; Kepenekian, M.; Hadar, I.; Katan, C.; Even, J.; Schaller, R. D.; Stoumpos, C. C.; Kanatzidis, M. G. Structural Diversity in White-Light-Emitting Hybrid Lead Bromide Perovskites. J. Am. Chem. Soc. 2018, 140, 13078–13088.
- 45 Peng, Y.; Yao, Y.; Li, L.; Wu, Z.; Wang, S.; Luo, J. White-Light Emission in a Chiral One-Dimensional Organic–Inorganic Hybrid Perovskite. J. Mater. Chem. C 2018, 6, 6033–6037.
- 46 Fu, D.; Xin, J.; He, Y.; Wu, S.; Zhang, X.; Zhang, X. M.; Luo, J. Chirality- Dependent Second-Order Nonlinear Optical Effect in 1D Organic- Inorganic Hybrid Perovskite Bulk Single Crystal. Angew. Chem. Int. Ed. 2021, 60, 20021–20026.
- 47 Qi, S.; Cheng, P.; Han, X.; Ge, F.; Shi, R.; Xu, L.; Li, G.; Xu, J. Organic–Inorganic Hybrid Antimony(III) Halides for Second Harmonic Generation. Cryst. Growth Des. 2022, 22, 6545–6553.
- 48 Sun, X. T.; Ni, H. F.; Zhang, Y.; Fu, D. W. Hybrid Perovskite Shows Temperature-Dependent Photoluminescence and Dielectric Response Triggered by Halogen Substitution. Chin. J. Struct. Chem. 2024, 43, 100212.
- 49 Long, G.; Jiang, C.; Sabatini, R.; Yang, Z.; Wei, M.; Quan, L. N.; Liang, Q.; Rasmita, A.; Askerka, M.; Walters, G.; Gong, X.; Xing, J.; Wen, X.; Quintero Bermudez, R.; Yuan, H.; Xing, G.; Wang, X. R.; Song, D.; Voznyy, O.; Zhang, M.; Hoogland, S.; Gao, W.; Xiong, Q.; Sargent, E. H. Spin Control in Reduced-Dimensional Chiral Perovskites. Nat. Photonics 2018, 12, 528–533.
- 50 Son, J.; Ma, S.; Jung, Y. K.; Tan, J.; Jang, G.; Lee, H.; Lee, C. U.; Lee, J.; Moon, S.; Jeong, W.; Walsh, A.; Moon, J. Unraveling Chirality Transfer Mechanism by Structural Isomer-Derived Hydrogen Bonding Interaction in 2D Chiral Perovskite. Nat. Commun. 2023, 14, 3124.
- 51 Zhu, T.; Weng, W.; Ji, C.; Zhang, X.; Ye, H.; Yao, Y.; Li, X.; Li, J.; Lin, W.; Luo, J. Chain-to-Layer Dimensionality Engineering of Chiral Hybrid Perovskites to Realize Passive Highly Circular-Polarization-Sensitive Photodetection. J. Am. Chem. Soc. 2022, 144, 18062–18068.
- 52 Abhervé, A.; Allain, M.; Mercier, N. Perovskite Versus Nonperovskite: Modulating the Nature and Optical Properties of One-Dimensional Chiral Lead–Bromide Networks. Inorg. Chem. 2024, 63, 5916–5923.
- 53 Wang, L.; Xue, Y.; Cui, M.; Huang, Y.; Xu, H.; Qin, C.; Yang, J.; Dai, H.; Yuan, M. A Chiral Reduced-Dimension Perovskite for an Efficient Flexible Circularly Polarized Light Photodetector. Angew. Chem. Int. Ed. 2020, 59, 6442–6450.
- 54 Ma, J.; Fang, C.; Liang, L.; Wang, H.; Li, D. Full-Stokes Polarimeter Based on Chiral Perovskites with Chirality and Large Optical Anisotropy. Small 2021, 17, 2103855.
- 55 Luo, J. Q.; Jia, Q. Q.; Teri, G.; Lun, M. M.; Wang, Z. J.; Zhang, Z. X.; Zhang, Y.; Fu, D. W. Chirality Extends Multiple-Channel Bistable Responses in Hybrid Perovskites. ACS Mater. Lett. 2023, 6, 452–460.
- 56 Shen, Z. Y.; Liang, X. J.; He, B. X. 1D Chiral Lead Halide Perovskites with Superior Second-Order Optical Nonlinearity. Adv. Opt. Mater. 2021, 10, 2101545.
- 57 Ge, F.; Li, B. H.; Cheng, P.; Li, G.; Ren, Z.; Xu, J.; Bu, X. H. Chiral Hybrid Copper(I) Halides for High Efficiency Second Harmonic Generation with a Broadband Transparency Window. Angew. Chem. Int. Ed. 2022, 61, e202115024.
- 58 Yu, Z.; Cao, S.; Zhao, Y.; Guo, Y.; Dong, M.; Fu, Y.; Zhao, J.; Yang, J.; Jiang, L.; Wu, Y. Chiral Lead-Free Double Perovskite Single-Crystalline Microwire Arrays for Anisotropic Second-Harmonic Generation. ACS Appl. Mater. Interfaces 2022, 14, 39451–39458.
- 59 Zhao, J.; Huo, H.; Zhao, Y.; Guo, Y.; Dong, M.; Fu, Y.; Zhang, J.; Gao, Z.; Kang, L. Chiral Hybrid Perovskites (R-/S-ClPEA)4Bi2I10 with Enhanced Chirality and Spin–Orbit Coupling Splitting for Strong Nonlinear Optical Circular Dichroism and Spin Selectivity Effects. Chem. Mater. 2023, 35, 4347–4354.
- 60 Ge, F.; Cheng, P.; Li, Q.; Xu, J.; Bu, X. H. Achiral Fluorinated Aromatic Ligands Based Chiral Hybrid Antimony Halides with High-Efficiency Second-Harmonic Generation. Adv. Opt. Mater. 2023, 11, 2301040.
- 61 Lin, J.; Zhou, J.; Wang, Z.; Li, L.; Li, M.; Xu, J.; Wu, S.; Naumov, P.; Gong, J. Low-Temperature Flexibility of Chiral Organic Crystals with Highly Efficient Second-Harmonic Generation. Angew. Chem. Int. Ed. 2024, e202416856.
- 62 Fu, X.; Zeng, Z.; Jiao, S.; Wang, X.; Wang, J.; Jiang, Y.; Zheng, W.; Zhang, D.; Tian, Z.; Li, Q.; Pan, A. Highly Anisotropic Second-Order Nonlinear Optical Effects in the Chiral Lead-Free Perovskite Spiral Microplates. Nano Lett. 2023, 23, 606–613.
- 63 Guo, Z.; Li, J.; Liang, J.; Wang, C.; Zhu, X.; He, T. Regulating Optical Activity and Anisotropic Second-Harmonic Generation in Zero- Dimensional Hybrid Copper Halides. Nano Lett. 2022, 22, 846–852.
- 64 Thirumal, K.; Chong, W. K.; Xie, W.; Ganguly, R.; Muduli, S. K.; Sherburne, M.; Asta, M.; Mhaisalkar, S.; Sum, T. C.; Soo, H. S.; Mathews, N. Morphology-Independent Stable White-Light Emission from Self-Assembled Two-Dimensional Perovskites Driven by Strong Exciton–Phonon Coupling to the Organic Framework. Chem. Mater. 2017, 29, 3947–3953.
- 65 Qi, J. C.; Qin, Y.; Peng, H.; Lv, H. P.; Bai, Y. J.; Shen, X.; Xia, Z. T.; Liao, W. Q. A Z/E Isomeric Cation Designed Organic-Inorganic Cadmium Chloride Ferroelectric with Broadband White-Light Emission. Sci. China Chem. 2024, 67, 4167–4174.
- 66 Gao, F. F.; Qin, Y.; Li, Z. G.; Li, W.; Hao, J.; Li, X.; Liu, Y.; Howard, C. J.; Wu, X.; Jiang, X.; Lin, Z.; Lu, P.; Bu, X. H. Unusual Pressure-Induced Self-Trapped Exciton to Free Exciton Transfer in Chiral 2D Lead Bromide Perovskites. ACS Nano 2024, 18, 3251–3259.
- 67 Mao, L.; Wu, Y.; Stoumpos, C. C.; Wasielewski, M. R.; Kanatzidis, M. G. White-Light Emission and Structural Distortion in New Corrugated Two-Dimensional Lead Bromide Perovskites. J. Am. Chem. Soc. 2017, 139, 5210–5215.
- 68 Thomaz, J. E.; Lindquist, K. P.; Karunadasa, H. I.; Fayer, M. D. Single Ensemble Non-Exponential Photoluminescent Population Decays from a Broadband White-Light-Emitting Perovskite. J. Am. Chem. Soc. 2020, 142, 16622–16631.
- 69 Hu, H.; Zhang, Y.; Huang, S.-S.; Li, Z.-G.; Liu, Y.; Feng, R.; Li, W. Temperature- and Pressure-Responsive Photoluminescence in a 1D Hybrid Lead Halide. Chin. J. Struct. Chem. 2024, 43, 100395.
- 70 Zhang, B. B.; Wang, F.; Xiao, B.; Xu, Y.; Gao, K.; Jie, W. Self-Trap- State-Adjustable Photoluminescence of Quasi-One-Dimensional RbPbI3 and Cs Substitutional Counterparts. J. Mater. Chem. C 2020, 8, 12108–12112.
- 71 Huang, S. S.; Li, Z. Y.; Zhang, Y.; Yang, H. R.; Liu, Y.; Azeem, M.; Feng, R.; Li, W. Enhanced Blue Emission Via Pressure Treatment of an Organic-Inorganic Zinc Bromide. Chin. J. Chem. 2025, 43, 524–530.
- 72 Li, K.; Li, Z. Y.; Dong, H. R.; Chen, Y.; Li, Z. G.; Chen, Y. Q.; Feng, R.; Li, W. Temperature- and Pressure-Dependent Emissions and Crystal- Glass Transition of a Hybrid Manganese Bromide. Chin. J. Chem. 2025, 43, 501–507.
- 73 Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. a. K.; Puschmann, H. Olex2: A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42, 339–341.
- 74 Groom, C. R.; Allen, F. H. The Cambridge Structural Database in Retrospect and Prospect. Angew. Chem. Int. Ed. 2014, 53, 662–671.