Controllable Exciton Diffusion Length and Ultrafast Charge Generation in Ternary Organic Solar Cells
Sixuan Cheng
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorJiawei Qiao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorPeng Lu
School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorWei Qin
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xiaotao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
E-mail: [email protected]Search for more papers by this authorSixuan Cheng
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorJiawei Qiao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorPeng Lu
School of Physics, National Demonstration Center for Experimental Physics Education, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorWei Qin
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
Search for more papers by this authorCorresponding Author
Xiaotao Hao
School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100 China
ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010 Australia
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
Charge generation, a critical process in the operation of organic solar cell (OSC), requires thorough investigation in an ultrafast perspective. This work demonstrates that the utilization of alloy model for the non-fullerene acceptor (NFA) component can regulate the crystallization properties of active layer films, which in turn affects exciton diffusion and hole transfer (HT), ultimately influencing the charge generation process. By incorporating BTP-eC7 as a third component, without expanding absorption range or changing molecular energy levels but regulating the ultrafast exciton diffusion and HT processes, the power conversion efficiency (PCE) of the optimized PM6:BTP-eC9:BTP-eC7 based ternary OSC is improved from 17.30% to 17.83%, primarily due to the enhancement of short-circuit current density (JSC). Additionally, the introduction of BTP-eC7 also reduces the trap state density in the photoactive layer which helps to reduce the loss of JSC. This study introduces a novel approach for employing ternary alloy models by incorporating dual acceptors with similar structures, and elucidates the underlying mechanism of charge generation and JSC in ternary OSCs.
Supporting Information
Filename | Description |
---|---|
cjoc202300741-sup-0001-supinfo.pdfPDF document, 1.8 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Yuan, J.; Zhang, Y. Q.; Zhou, L. Y.; Zhang, G. C.; Yip, H. L.; Lau, T. K.; Lu, X. H.; Zhu, C.; Peng, H. J.; Johnson, P. A.; Leclerc, M.; Cao, Y.; Ulanski, J.; Li, Y. F.; Zou, Y. P. Single-Junction Organic Solar Cell with over 15% Efficiency Using Fused-Ring Acceptor with Electron-Deficient Core. Joule 2019, 3, 1140–1151.
- 2 An, N.; Cai, Y. H.; Wu, H. B.; Tang, A. L.; Zhang, K. N.; Hao, X. T.; Ma, Z. F.; Guo, Q.; Ryu, H. S.; Woo, H. Y.; Sun, Y. M.; Zhou, E. J. Solution-Processed Organic Solar Cells with High Open-Circuit Voltage of 1.3 V and Low Non-Radiative Voltage Loss of 0.16 V. Adv. Mater. 2020, 32, 2002122.
- 3 Cui, Y.; Wang, Y. M.; Bergqvist, J.; Yao, H. F.; Xu, Y.; Gao, B. W.; Yang, C. Y.; Zhang, S. Q.; Inganäs, O.; Gao, F.; Hou, J. H. Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nat. Energy 2019, 4, 768–775.
- 4 Jiang, K.; Wei, Q. Y.; Lai, J. Y. L.; Peng, Z. X.; Kim, H.; Yuan, J.; Ye, L.; Ade, H.; Zou, Y. P.; Yan, H. Alkyl Chain Tuning of Small Molecule Acceptors for Efficient Organic Solar Cells. Joule 2019, 3, 3020–3033.
- 5 Li, C.; Zhou, J. D.; Song, J. L.; Xu, J. Q.; Zhang, H. T.; Zhang, X. N.; Guo, J.; Zhu, L.; Wei, D. H.; Han, G. C.; Min, J.; Zhang, Y.; Xie, Z. Q.; Yi, Y. P.; Yan, H.; Gao, F.; Liu, F.; Sun, Y. M. Non-fullerene acceptors with branched side chains and improved molecular packing to exceed 18% efficiency in organic solar cells. Nat. Energy 2021, 6, 605–613.
- 6 Bi, P. Q.; Zhang, S. Q.; Wang, J. W.; Ren, J. Z.; Hou, J. H. Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chin. J. Chem. 2021, 39, 2607–2625.
- 7 Gao, Y.; Yang, X. R.; Wang, W.; Sun, R.; Cui, J. T.; Fu, Y.; Li, K.; Zhang, M. M.; Liu, C.; Zhu, H. M.; Lu, X. H.; Min, J. High-Performance Small Molecule Organic Solar Cells Enabled by a Symmetric-Asymmetric Alloy Acceptor with a Broad Composition Tolerance. Adv. Mater. 2023, 35, 2300531.
- 8 Pang, B.; Liao, C. T.; Xu, X. P.; Yu, L. Y.; Li, R. P.; Peng, Q. Benzo[d]thiazole Based Wide Bandgap Donor Polymers Enable 19.54% Efficiency Organic Solar Cells Along with Desirable Batch-to-Batch Reproducibility and General Applicability. Adv. Mater. 2023, 35, 2300631.
- 9 Han, C. Y.; Wang, J. X.; Zhang, S.; Chen, L. L.; Bi, F. Z.; Wang, J. J.; Yang, C. M.; Wang, P. C.; Li, Y. H.; Bao, X. C. Over 19% Efficiency Organic Solar Cells by Regulating Multidimensional Intermolecular Interactions. Adv. Mater. 2023, 35, 2208986.
- 10 Wang, J. Q.; Wang, Y. F.; Bi, P. Q.; Chen, Z. H.; Qiao, J. W.; Li, J. Y.; Wang, W. X.; Zheng, Z.; Zhang, S. Q.; Hao, X. T.; Hou, J. H. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583.
- 11 Sun, W. J.; Wang, Y. T.; Zhang, Y. M.; Sun, B.; Zhang, Z. Q.; Xiao, M. J.; Li, X. Y.; Huo, Y.; Xin, J. M.; Zhu, Q. L.; Ma, W.; Zhang, H. L. A Cathode Interface Layer Based on 4,5,9,10-Pyrene Diimide for Highly Efficient Binary Organic Solar Cells. Angew. Chem. Int. Ed. 2022, 61, e202208383.
- 12 Chen, T. Y.; Li, S. X.; Li, Y. K.; Chen, Z.; Wu, H. T.; Lin, Y.; Gao, Y.; Wang, M. T.; Ding, G. Y.; Min, J.; Ma, Z. F.; Zhu, H. M.; Zuo, L. J.; Chen, H. Z. Compromising Charge Generation and Recombination of Organic Photovoltaics with Mixed Diluent Strategy for Certified 19.4% Efficiency. Adv. Mater. 2023, 35, 2300400.
- 13 Bi, P. Q.; Wang, J. Q.; Cui, Y.; Zhang, J. Q.; Zhang, T.; Chen, Z. H.; Qiao, J. W.; Dai, J. B.; Zhang, S. Q.; Hao, X. T.; Wei, Z. X.; Hou, J. H. Enhancing Photon Utilization Efficiency for High-Performance Organic Photovoltaic Cells via Regulating Phase-Transition Kinetics. Adv. Mater. 2023, 35, 2210865.
- 14 Liu, C. H.; Fu, Y. W.; Zhou, J. P.; Wang, L.; Guo, C. H.; Cheng, J. C.; Sun, W.; Chen, C.; Zhou, J.; Liu, D.; Li, W.; Wang, T. Alkoxythiophene-Directed Fibrillization of Polymer Donor for Efficient Organic Solar Cells. Adv. Mater. 2023, 35, 2308608.
- 15 Zhou, J.; Li, D. H.; Wang, L.; Zhang, X. Y.; Deng, N.; Guo, C. H.; Chen, C.; Gan, Z. R.; Liu, C. H.; Sun, W.; Liu, D.; Li, W.; Li, Z.; Wang, K.; Wang, T. Bicontinuous donor and acceptor fibril networks enable 19.2% efficiency pseudo-bulk heterojunction organic solar cells. Interdiscip. Mater. 2023, 2, 866.
- 16 Guo, C. H.; Fu, Y. W.; Li, D. H.; Wang, L.; Zhou, B. J.; Chen, C.; Zhou, J.; Sun, Y. D.; Gan, Z. R.; Liu, D.; Li, W.; Wang, T. A Polycrystalline Polymer Donor as Pre-Aggregate toward Ordered Molecular Aggregation for 19.3% Efficiency Binary Organic Solar Cells. Adv. Mater. 2023, 35, 2304921.
- 17 Gan, Z. R.; Wang, L.; Cai, J. L.; Guo, C. H.; Chen, C.; Li, D. H.; Fu, Y. W.; Zhou, B. J.; Sun, Y. D.; Liu, C. H.; Zhou, J.; Liu, D.; Li, W.; Wang, T. Electrostatic force promoted intermolecular stacking of polymer donors toward 19.4% efficiency binary organic solar cells. Nat. Commun. 2023, 14, 6297.
- 18 Zhang, Z. Q.; Deng, D.; Li, Y.; Ding, J. W.; Wu, Q.; Zhang, L. L.; Zhang, G. J.; Iqbal, M. J.; Wang, R.; Zhang, J. Q.; Qiu, X. H.; Wei, Z. X. Polymerized Small-Molecule Acceptor as an Interface Modulator to Increase the Performance of All-Small-Molecule Solar Cells. Adv. Energy Mater. 2022, 12, 2102394.
- 19 Xu, L. Y.; Tao, W. X.; Liu, H.; Ning, J. H.; Huang, M. H.; Zhao, B.; Lu, X. H.; Tan, S. T. Achieving 17.38% efficiency of ternary organic solar cells enabled by a large-bandgap donor with noncovalent conformational locking. J. Mater. Chem. A 2021, 9, 11734–11740.
- 20 Cui, Y. J.; Chen, Z.; Zhu, P. P.; Ma, W.; Zhu, H. M.; Liao, X. F.; Chen, Y. W. Enhancing photostability and power conversion efficiency of organic solar cells by a "sunscreen" ternary strategy. Sci. China Chem. 2023, 66, 1179–1189.
- 21 Bi, P. Q.; Hao, X. T. Versatile Ternary Approach for Novel Organic Solar Cells: A Review. Sol. RRL 2019, 3, 1800263.
- 22 Duan, X. P.; Song, W.; Qiao, J. W.; Li, X. M.; Cai, Y. H.; Wu, H. B.; Zhang, J.; Hao, X. T.; Tang, Z.; Ge, Z. Y.; Huang, F.; Sun, Y. M. Ternary strategy enabling high-efficiency rigid and flexible organic solar cells with reduced non-radiative voltage loss. Energy Environ. Sci. 2022, 15, 1563–1572.
- 23 Zhou, Z. X.; Xu, Y. C.; Yang, J.; Zhang, S. Y.; Jin, S. J.; Li, H. X.; Zhu, W. G.; Liu, Y. New Medium-Bandgap Nonfused Ring Guest Acceptor with a Higher-Lying LUMO Level Enables High-Performance Ternary Organic Solar Cells. ACS Appl. Mater. Interfaces 2023, 15, 42792–42801.
- 24 Guan, H.; Liao, Q. G.; Huang, T. H.; Geng, S.; Cao, Z. L.; Zhang, Z. L.; Wang, D. J.; Zhang, J. Solid Additive Enables Organic Solar Cells with Efficiency up to 18.6%. ACS Appl. Mater. Interfaces 2023, 15, 25774–25782.
- 25 Fu, J. H.; Chen, H. Y.; Huang, P. H.; Yu, Q. Q.; Tang, H.; Chen, S. S.; Jung, S.; Sun, K.; Yang, C.; Lu, S. R.; Kan, Z. P.; Xiao, Z. Y.; Li, G. Eutectic phase behavior induced by a simple additive contributes to efficient organic solar cells. Nano Energy 2021, 84, 105862.
- 26 Xian, K. H.; Zhou, K. K.; Li, M. F.; Liu, J. W.; Zhang, Y. W.; Zhang, T.; Cui, Y.; Zhao, W. C.; Yang, C. M.; Hou, J. H.; Geng, Y. H.; Ye, L. Simultaneous Optimization of Efficiency, Stretchability, and Stability in All-Polymer Solar Cells via Aggregation Control. Chin. J. Chem. 2023, 41, 159–166.
- 27 Zhang, K. N.; Du, X. Y.; Qiao, J. W.; Hu, H. X.; Zhang, W. Q.; Wang, L. H.; Gao, M. S.; Yin, H.; Qin, W.; Hao, X. T. Triggering favorable energy landscape: a general approach towards highly efficient and photostable organic solar cells. Energy Environ. Sci. 2022, 15, 5261.
- 28 Shaw, P. E.; Ruseckas, A.; Samuel, I. D. W. Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 2008, 20, 3516.
- 29 Niu, M. S.; Wang, K. W.; Yang, X. Y.; Bi, P. Q.; Zhang, K. N.; Feng, X. J.; Chen, F.; Qin, W.; Xia, J. L.; Hao, X. T. Hole Transfer Originating from Weakly Bound Exciton Dissociation in Acceptor-Donor-Acceptor Nonfullerene Organic Solar Cells. J. Phys. Chem. Lett. 2019, 10, 7100–7106.
- 30 Zhou, G. Q.; Zhang, M.; Chen, Z.; Zhang, J. Y.; Zhan, L. L.; Li, S. X.; Zhu, L.; Wang, Z. D.; Zhu, X. Z.; Chen, H. Z.; Wang, L. J.; Liu, F.; Zhu, H. M. Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells. ACS Energy Lett. 2021, 6, 2971–2981.
- 31 Cui, Y.; Yao, H. F.; Zhang, J. Q.; Xian, K. H.; Zhang, T.; Hong, L.; Wang, Y. M.; Xu, Y.; Ma, K. Q.; An, C. B.; He, C.; Wei, Z. X.; Gao, F.; Hou, J. H. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Mater. 2020, 32, 1908205.
- 32 Li, D. H.; Guo, C. H.; Zhang, X.; Du, B. C.; Wang, P.; Cheng, S. L.; Cai, J. L.; Wang, H.; Liu, D.; Yao, H. F.; Hou, J. H.; Wang, T. Heating-induced aggregation control for efficient sequential-cast organic solar cells. Aggregate 2022, 3, e104.
- 33 Zhang, K. N.; Du, X. Y.; Chen, Z. H.; Wang, T.; Yang, Z. Q.; Yin, H.; Yang, Y.; Qin, W.; Hao, X. T. Reducing Limitations of Aggregation-Induced Photocarrier Trapping for Photovoltaic Stability via Tailoring Intermolecular Electron-Phonon Coupling in Highly Efficient Quaternary Polymer Solar Cells. Adv. Energy Mater. 2022, 12, 2103371.
- 34 Huang, J. Y., GIWAXS-Tools, Version 2.3.4, https://gitee.com/swordshinehjy/giwaxs-script, accessed: Feb 27, 2023.
- 35 Li, W.; Chen, M. X.; Cai, J. L.; Spooner, E. L. K.; Zhang, H. J.; Gurney, R. S.; Liu, D.; Xiao, Z.; Lidzey, D. G.; Ding, L. M.; Wang, T. Molecular Order Control of Non-fullerene Acceptors for High-Efficiency Polymer Solar Cells. Joule 2019, 3, 819–833.
- 36 Xu, X. P.; Jing, W. W.; Meng, H. F.; Guo, Y. Y.; Yu, L. Y.; Li, R. P.; Peng, Q. Sequential Deposition of Multicomponent Bulk Heterojunctions Increases Efficiency of Organic Solar Cells. Adv. Mater. 2023, 35, 2208997.
- 37 Xian, K. H.; Zhang, S. G.; Xu, Y.; Liu, J. W.; Zhou, K. K.; Peng, Z. X.; Li, M. F.; Zhao, W. C.; Chen, Y.; Fei, Z. P.; Hou, J. H.; Geng, Y. H.; Ye, L. Refining acceptor aggregation in nonfullerene organic solar cells to achieve high efficiency and superior thermal stability. Sci. China Chem. 2023, 66, 202–215.
- 38 Cui, F. Z.; Chen, Z. H.; Qiao, J. W.; Wang, T.; Lu, G. H.; Yin, H.; Hao, X. T. Ternary-Assisted Sequential Solution Deposition Enables Efficient All-Polymer Solar Cells with Tailored Vertical-Phase Distribution. Adv. Funct. Mater. 2022, 32, 2200478.
- 39 Cai, Y. H.; Li, Q.; Lu, G. Y.; Ryu, H. S.; Li, Y.; Jin, H.; Chen, Z. H.; Tang, Z.; Lu, G. H.; Hao, X. T.; Woo, H. Y.; Zhang, C. F.; Sun, Y. M. Vertically optimized phase separation with improved exciton diffusion enables efficient organic solar cells with thick active layers. Nat. Commun. 2022, 13, 2369.
- 40 Cha, H.; Wheeler, S.; Holliday, S.; Dimitrov, S. D.; Wadsworth, A.; Lee, H. H.; Baran, D.; McCulloch, I.; Durrant, J. R. Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Adv. Funct. Mater. 2018, 28, 1704389.
- 41 Firdaus, Y.; Le Corre, V. M.; Karuthedath, S.; Liu, W.; Markina, A.; Huang, W.; Chattopadhyay, S.; Nahid, M. M.; Nugraha, M. I.; Lin, Y.; Seitkhan, A.; Basu, A.; Zhang, W.; McCulloch, I.; Ade, H.; Labram, J.; Laquai, F.; Andrienko, D.; Koster, L. J. A.; Anthopoulos, T. D. Long-range exciton diffusion in molecular non-fullerene acceptors. Nat. Commun. 2020, 11, 5220.
- 42 Chen, Z.; Wang, T.; Wen, Z.; Lu, P.; Qin, W.; Yin, H.; Hao, X.-T. Trap State Induced Recombination Effects on Indoor Organic Photovoltaic Cells. ACS Energy Lett. 2021, 6, 3203–3211.
- 43 Chandrabose, S.; Chen, K.; Barker, A. J.; Sutton, J. J.; Prasad, S. K. K.; Zhu, J.; Zhou, J.; Gordon, K. C.; Xie, Z.; Zhan, X.; Hodgkiss, J. M. High Exciton Diffusion Coefficients in Fused Ring Electron Acceptor Films. J. Am. Chem. Soc. 2019, 141, 6922–6929.
- 44 Jin, F.; Yuan, J.; Guo, W.; Xu, Y.; Zhang, Y.; Sheng, C.; Ma, W.; Zhao, H. Improved Charge Generation via Ultrafast Effective Hole-Transfer in All-Polymer Photovoltaic Blends with Large Highest Occupied Molecular Orbital (HOMO) Energy Offset and Proper Crystal Orientation. Adv. Funct. Mater. 2018, 28, 1801611.
- 45 Liu, Y.; Zuo, L.; Shi, X.; Jen, A. K. Y.; Ginger, D. S. Unexpectedly Slow Yet Efficient Picosecond to Nanosecond Photoinduced Hole-Transfer Occurs in a Polymer/Nonfullerene Acceptor Organic Photovoltaic Blend. ACS Energy Lett. 2018, 3, 2396–2403.
- 46 Wang, R.; Yao, Y.; Zhang, C.; Zhang, Y.; Bin, H.; Xue, L.; Zhang, Z. G.; Xie, X.; Ma, H.; Wang, X.; Li, Y.; Xiao, M. Ultrafast hole transfer mediated by polaron pairs in all-polymer photovoltaic blends. Nat. Commun. 2019, 10, 398.
- 47 Zhou, G.; Zhang, M.; Chen, Z.; Zhang, J.; Zhan, L.; Li, S.; Zhu, L.; Wang, Z.; Zhu, X.; Chen, H.; Wang, L.; Liu, F.; Zhu, H. Marcus Hole Transfer Governs Charge Generation and Device Operation in Nonfullerene Organic Solar Cells. ACS Energy Lett. 2021, 6, 2971.
- 48 Seitkhan, A.; Neophytou, M.; Kirkus, M.; Abou-Hamad, E.; Hedhili, M. N.; Yengel, E.; Firdaus, Y.; Faber, H.; Lin, Y.; Tsetseris, L.; McCulloch, I.; Anthopoulos, T. D. Use of the Phen-NaDPO:Sn(SCN)2 Blend as Electron Transport Layer Results to Consistent Efficiency Improvements in Organic and Hybrid Perovskite Solar Cells. Adv. Funct. Mater. 2019, 29, 1905810.
- 49 Zhu, X. X.; Zhang, G. C.; Zhang, J.; Yip, H. L.; Hu, B. Self-Stimulated Dissociation in Non-Fullerene Organic Bulk-Heterojunction Solar Cells. Joule 2020, 4, 2443–2457.
- 50 Hughes, M. P.; Rosenthal, K. D.; Ran, N. A.; Seifrid, M.; Bazan, G. C.; Nguyen, T. Q. Determining the Dielectric Constants of Organic Photovoltaic Materials Using Impedance Spectroscopy. Adv. Funct. Mater. 2018, 28, 1801542.
- 51 Xiao, B.; Calado, P.; MacKenzie, R. C. I.; Kirchartz, T.; Yan, J.; Nelson, J. Relationship between Fill Factor and Light Intensity in Solar Cells Based on Organic Disordered Semiconductors: The Role of Tail States. Phys. Rev. Appl. 2020, 14, 024034.
- 52 Wang, J. Q.; Wang, Y. F.; Bi, P. Q.; Chen, Z. H.; Qiao, J. W.; Li, J. Y.; Wang, W. X.; Zheng, Z.; Zhang, S. Q.; Hao, X. T.; Hou, J. H. Binary Organic Solar Cells with 19.2% Efficiency Enabled by Solid Additive. Adv. Mater. 2023, 35, 2301583.
- 53 Zhang, K.-N.; Jiang, Z.-N.; Wang, T.; Niu, M.-S.; Feng, L.; Qin, C.-C.; So, S.-K.; Hao, X.-T. High-Performance Ternary Organic Solar Cells with Morphology-Modulated Hole Transfer and Improved Ultraviolet Photostability. Sol. RRL 2020, 4.
- 54 Zhang, K.-N.; Jiang, Z.-N.; Wang, T.; Qiao, J.-W.; Feng, L.; Qin, C.-C.; Yin, H.; So, S.-K.; Hao, X.-T. Exploring the mechanisms of exciton diffusion improvement in ternary polymer solar cells: From ultrafast to ultraslow temporal scale. Nano Energy 2021, 79, 105513.
- 55 Song, J.; Li, C.; Zhu, L.; Guo, J.; Xu, J.; Zhang, X.; Weng, K.; Zhang, K.; Min, J.; Hao, X.; Zhang, Y.; Liu, F.; Sun, Y. Ternary Organic Solar Cells with Efficiency >16.5% Based on Two Compatible Nonfullerene Acceptors. Adv. Mater. 2019, 31, e1905645.
- 56 Proctor, C. M.; Kim, C.; Neher, D.; Nguyen, T. Q. Nongeminate Recombination and Charge Transport Limitations in Diketopyrrolopyrrole-Based Solution-Processed Small Molecule Solar Cells. Adv. Funct. Mater. 2013, 23, 3584.