“Steric Armor” Strategy of Blue Fluorescent Emitters against Photooxidation-Induced Degradation
Sha-Sha Wang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorJing-Rui Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorKuan-De Wang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHao-Ran Li
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorPeng-Hui Meng
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYang Zhou
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXiang Yu
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYing Wei
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Quan-You Feng
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yu-He Kan
Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, 223300 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ling-Hai Xie
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorSha-Sha Wang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorJing-Rui Zhang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorKuan-De Wang
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorHao-Ran Li
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorPeng-Hui Meng
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYang Zhou
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorXiang Yu
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorYing Wei
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
Search for more papers by this authorCorresponding Author
Quan-You Feng
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Yu-He Kan
Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huai'an, Jiangsu, 223300 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Ling-Hai Xie
Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing, Jiangsu, 210023 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Stability against oxygen is an important factor affecting the performance of organic semiconductor devices. Improving photooxidation stability can prolong the service life of the device and maintain the mechanical and photoelectric properties of the device. Generally, various encapsulation methods from molecular structure to macroscopic device level are used to improve photooxidation stability. Here, we adopted a crystallization strategy to allow 14H-spiro[dibenzo[c,h]acridine-7,9′-fluorene] (SFDBA) to pack tightly to resist fluorescence decay caused by oxidation. In this case, the inert group of SFDBA acts as a “steric armor”, protecting the photosensitive group from being attacked by oxygen. Therefore, compared with the fluorescence quenching of SFDBA powder under 2 h of sunlight, SFDBA crystal can maintain its fluorescence emission for more than 8 h under the same conditions. Furthermore, the photoluminescence quantum yields (PLQYs) of the crystalline film is 327% higher than that of the amorphous film. It shows that the crystallization strategy is an effective method to resist oxidation.
Supporting Information
Filename | Description |
---|---|
cjoc202300638-sup-0001-Supinfo.pdfPDF document, 1.3 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Demchenko, A. P. Photobleaching of organic fluorophores: quantitative characterization, mechanisms, protection. Methods Appl. Fluores. 2020, 8, 022001.
- 2 Allen, N. S. Recent advances in the photo-oxidation and stabilization of polymers. Chem. Soc. Rev. 1986, 15, 373–404.
- 3 Mateker, W. R.; McGehee, M. D. Progress in Understanding Degradation Mechanisms and lmproving Stability in Organic Photovoltaics. Adv. Mater. 2017, 29, 1603940.
- 4 Boyd, C. C.; Cheacharoen, R. R.; Leijtens, T.; McGehee, M. D. Understanding Degradation Mechanisms and lmproving Stability of Perovskite Photovoltaics. Chem. Rev. 2019, 119, 3418–3451.
- 5 Stennett, E. M. S.; Ciuba, M. A.; Levitus, M. Photophysical processes in single molecule organic fluorescent probes. Chem. Soc. Rev. 2014, 43, 1057–1075.
- 6 Sauer, M.; Heilemann, M. Single-Molecule Localization Microscopy in Eukaryotes. Chem. Rev. 2017, 117, 7478–7509.
- 7 Hori, Y.; Hirayama, S.; Kikuchi, K. Development of cyanine probes with dinitrobenzene quencher for rapid fluorogenic protein labelling. Philos. T. R. Soc. A 2017, 375, 20170018.
- 8 Zheng, Y. Y.; Li, M. Y.; Yu, N.; Wang, S. J.; Sun, L. L.; An, X.; Han, Y. M.; Lin, J. Y.; Ding, X. H.; Huang, W. Solution-processed triphenylethylene-fluorene fluorochromes toward deep-blue organic light-emitting diodes: benefits of preventing radical formation. Mater. Chem. Front. 2023, 7, 267–273.
- 9 Zheng, X. J.; Huang, R. J.; Zhong, C.; Xie, G. H.; Ning, W. M.; Huang, M. L.; Ni, F.; Dias, F. B.; Yang, C. L. Achieving 21% External Quantum Efficiency for Nondoped Solution-Processed Sky-Blue Thermally Activated Delayed Fluorescence OLEDs by Means of Multi-(Donor/Acceptor) Emitter with Through-Space/-Bond Charge Transfer. Adv. Sci. 2020, 7, 1902087.
- 10 Zhou, L.; Ni, F.; Li, N.; Wang, K.; Xie, G. H.; Yang, C. L. Tetracoordinate Boron-Based Multifunctional Chiral Thermally Activated Delayed Fluorescence Emitters. Angew. Chem. Int. Ed. 2022, 61, e202203844.
- 11 Ghamari, P.; Niazi, R. M.; Perepichka, D. F. Improving Environmental and Operational Stability of Polymer Field-Effect Transistors by Doping with Tetranitrofluorenone. ACS Appl. Mater. Interfaces 2023, 15, 19290–19299.
- 12 Song, W.; Lee, J. Y. Degradation Mechanism and Lifetime Improvement Strategy for Blue Phosphorescent Organic Light-Emitting Diodes. Adv. Opt. Mater. 2017, 5, 1600901.
- 13 Cui, A. J.; Peng, X. J.; Fan, J. L.; Chen, X. Y.; Wu, Y. K.; Guo, B. C. Synthesis, spectral properties and photostability of novel boron–dipyrromethene dyes. J. Photochem. Photobiol. A 2007, 186, 85–92.
- 14 Hou, L. P.; Zhang, X. Q.; Yao, N.; Chen, X.; Li, B. Q.; Shi, P.; Jin, C. B.; Huang, J. Q.; Zhang, Q. An encapsulating lithium-polysulfide electrolyte for practical lithium–sulfur batteries. Chem 2022, 8, 1083–1098.
- 15 Wang, S. S.; Xu, A. W. Amorphous Calcium Carbonate Stabilized by a Flexible Biomimetic Polymer Inspired by Marine Mussels. Cryst. Growth Des. 2013, 15, 1934–1942.
- 16 Zhu, Z. Z.; Li, Z.; Wei, X. X.; Wang, J. J.; Xiao, S. H.; Li, R.; Wu, R.; Chen, J. S. Achieving efficient electroreduction of CO2 to CO in a wide potential window by encapsulating Ni nanoparticles in N-doped carbon nanotubes. Carbon 2021, 185, 9–16.
- 17 Chang, S.; Wu, X. M.; Li, Y. S.; Niu, D. C.; Ma, Z.; Zhao, W. R.; Gu, J. L.; Dong, W. J.; Ding, F.; Zhu, W. H.; Shi, J. L. A Hydrophobic Dye-Encapsulated Nano-Hybrid as an Efficient Fluorescent Probe for Living Cell Imaging. Adv. Healthc. Mater. 2012, 1, 475–479.
- 18 Pradhan, J.; Moitra, P.; Umesh.; Das, B.; Mondal, P.; Kumar, G. S.; Ghorai, U. K.; Acharya, S.; Bhattacharya, S. Encapsulation of CsPbBr3 Nanocrystals by a Tripodal Amine Markedly Improves Photoluminescence and Stability Concomitantly via Anion Defect Elimination. Chem. Mater. 2020, 32, 7159–7171.
- 19 Lin, J. Y.; Liu, B.; Yu, M. N.; Wang, X. H.; Lin, Z. Q.; Zhang, X. W.; Sun, C.; Cabanillas-Gonzalez, J.; Xie, L. H.; Liu ,F.; Ou, C. J.; Bai, L. B.; Han, Y. M.; Xu, M.; Zhu, W. S.; Smith, T. A.; Stavrinou, P. N.; Bradley, D. D. C.; Huang, W. Ultrastable Supramolecular Self-Encapsulated Wide-Bandgap Conjugated Polymers for Large-Area and Flexible Electroluminescent Devices. Adv. Mater. 2019, 31, 1804811.
- 20 Park, J. S.; Chae, H.; Chung, H. K.; Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Tech. 2011, 26, 034001.
- 21 Hu, Z.; Han, M. M.; Chen, C.; Zou, Z.; Shen, Y.; Fu, Z.; Zhu, X. G.; Zhang, Y. X.; Zhang, H. M.; Zhao, H. J.; Wang, G. Z. Hollow carbon sphere encapsulated nickel nanoreactor for aqueous-phase hydrogenation- rearrangement tandem reaction with enhanced catalytic performance. Appl. Catal. B-Environ. 2022, 306, 121140.
- 22 Wankar, J.; Kotla, N. G.; Gera, S.; Rasala, S.; Pandit, A.; Rochev, Y. A. Recent Advances in Host–Guest Self-Assembled Cyclodextrin Carriers: Implications for Responsive Drug Delivery and Biomedical Engineering. Adv. Funct. Mater. 2020, 30, 1909049.
- 23 Farcas, A.; Assaf, K. I.; Resmerita, A. M.; Cantin, S.; Balan, M.; Aubert, P. H.; Nau, W. M. Cucurbit [7] uril-based fluorene polyrotaxanes. Eur. Polym. J. 2016, 83, 256–264.
- 24 Wu, X.; Zhu, W. H. Stability enhancement of fluorophores for lighting up practical application in bioimaging. Chem. Soc. Rev. 2015, 44, 4179–4184.
- 25 Niu, D. C.; Li, Y. S.; Qiao, X. L.; Li, Y.; Zhao, W. R.; Chen, H. R.; Zhao, Q. L.; Ma, Z.; Shi, J. L. A facile approach to fabricate functionalized superparamagnetic copolymer-silica nanocomposite spheres. Chem. Commun. 2008, 4463–4465.
- 26 Niu, D. C.; Li, Y. S.; Ma, Z.; Diao, H.; Gu, J. L.; Chen, H. R.; Zhao, W. R.; Ruan, M. L.; Zhang, Y. L.; Shi, J. L. Preparation of Uniform, Water-Soluble, and Multifunctional Nanocomposites with Tunable Sizes. Adv. Funct. Mater. 2010, 20, 773–780.
- 27 Chang, S.; Wu, X. M.; Li, Y. S.; Niu, D. C.; Ma, Z.; Zhao, W. R.; Gu, J. L.; Dong, W. J.; Ding, F.; Zhu, W. H.; Shi, J. L. A Hydrophobic Dye-Encapsulated Nano-Hybrid as an Efficient Fluorescent Probe for Living Cell Imaging. Adv. Healthc. Mater. 2012, 1, 475–479.
- 28 Deng, J.; Deng, D. H.; Bao, X. H. Robust Catalysis on 2D Materials Encapsulating Metals: Concept, Application, and Perspective. Adv. Mater. 2017, 29, 1606967.
- 29 Li, Y. X.; Wang, S. S.; Yu, Y.; Zhang, H.; Wang, W. Y.; Yang, R. Q.; Xie, L. H.; Liu, F.; Lin, Z. Q.; Shi, N. E.; Sun, L. T.; Huang, W. SMART Design of a Bulk-Capped Supramolecular Segment for the Assembly into Organic Interdigital Lipid Bilayer-Like (ILB) Nanosheets. Small 2017, 14, 1703151.
- 30 Wang, S. S.; Rong, R.; Jin, L. Z.; Yang, S. S.; Li, Y. X.; Zhang, H.; Xiong, Y. W.; Sun, L. T.; Cao, H. T.; Xie, L. H.; Huang, W. Variable segment roles: Modulation of the packing modes, nanocrystal morphologies and optical emissions. Nanoscale 2018, 10, 13310–13314.
- 31 Li, Y. X.; Zhang, H.; Yu, M. N.; Wang, S. S.; Liu, Y. R.; Lin, D. Q.; Xie, L. H.; Lin, Z. Q.; Huang, W. Supramolecular steric hindrance effect on morphologies and photophysical behaviors of spirocyclic aromatic hydrocarbon nanocrystals. Nanoscale 2019, 11, 5158–5162.
- 32 Hu, X. W.; Wang, Y. L.; Zhao, Y.; Wang, G.; Bao, Y.; Xie, C. Solvent Effect on Crystal Structure of Tetracycline Hydrochloride. Chem. Eng. Technol. 2013, 36, 1355–1358
- 33 Wei, Y.; Tang, L.; Zhong, C. X.; Xie, X. M.; Sun, P. J.; Zhang, H.; Zheng, X. P.; Wang, X. L.; Xie, L. H. Photooxygenations and Self-Sensitizations of Naphthylamines: Efficient Access to Iminoquinones. J. Chem. 2018, 2018, 9180671.
- 34 Kazlauskas, K.; Kreiza, G.; Bobrovas, O.; Adomėnienė, O.; Adomėnas, P.; Jankauskas, V.; Juršėnas, S. Fluorene- and benzofluorene-cored oligomers as low threshold and high gain amplifying media. Appl. Phys. Lett. 2015, 107, 043301.
- 35 Dupuis, A.; Wong-Wah-Chung, P.; Rivaton, A.; Gardette, J. Influenceof the microstructure on the photooxidative degradation of poly(3-hexylthiophene). Polym. Degrad. Stabil. 2012, 97, 366–374.
- 36 Tomović, A. Ž.; Jovanović, V.P.; Đurišić, I.; Cerovski, V. Z.; Nastasijević, B.; Veličković, S. R.; Radulović, K.; Žikić, R. Fast photoluminescence quenching in thin films of 4,4’-bis(2,2-diphenylvinyl)-1,1’-biphenyl exposed to air. J. Lumin. 2015, 167, 204–210.