Dual-Confined Bead-Like CoSe2@NC@NCNFs Bifunctional Catalyst Boosting Rechargeable Zinc-Air Batteries†
Kuixing Ding
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Jiugang Hu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorLiming Zhao
College of Standardization, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorHuanan Yu
College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorShan Cai
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorYi Yang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Jun Tan
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorHongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorKuixing Ding
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorCorresponding Author
Jiugang Hu
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorLiming Zhao
College of Standardization, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorHuanan Yu
College of Materials and Chemistry, China Jiliang University, Hangzhou, Zhejiang, 310018 China
Search for more papers by this authorShan Cai
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorYi Yang
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorCorresponding Author
Jun Tan
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
E-mail: [email protected]; [email protected]Search for more papers by this authorHongshuai Hou
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorXiaobo Ji
College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083 China
Search for more papers by this authorDedicated to the Special Issue of Electrocatalysis.
Comprehensive Summary
Rationally developing efficient and durable bifunctional catalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is critical for rechargeable zinc-air batteries (ZABs). Herein, a bead-like CoSe2@NC@NCNFs bifunctional catalyst was designed and fabricated by confining cubic CoSe2 nanoparticles to three-dimensional (3D) porous MOFs-derived nitrogen-doped carbon (NC) and one-dimensional (1D) N-doped carbon nanofibers (NCNFs) through a facile encapsulate strategy. The 1D/3D continuous network structure contributes to the improvement of specific surface area and electronic conductivity, while the strong synergistic effect between CoSe2 sites and Co-Nx-C sites can effectively enhance electron/mass transfer and reduce the diffusion resistance. The as-constructed CoSe2@NC@NCNFs catalyst exhibits high catalytic activity and stability toward ORR/OER with a high half-wave potential of 0.80 V (vs. RHE) in ORR and a low overpotential of 280 mV at 10 mA·cm−2 in OER. More encouragingly, the rechargeable ZABs with CoSe2@NC@NCNFs cathode deliver high peak power densities (126.8 mW·cm−2), large specific capacities (763.1 mA·h·g−1), and robust charge-discharge cycling stability over 240 cycles. This study provides a facile strategy for designing efficient bifunctional catalysts for rechargeable energy conversion applications.
Supporting Information
Filename | Description |
---|---|
cjoc202300484-sup-0001-supinfo.pdfPDF document, 1.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Sun, W.; Wang, F.; Zhang, B.; Zhang, M.; Küpers, V.; Ji, X.; Theile, C.; Bieker, P.; Xu, K.; Wang, C. A Rechargeable Zinc-Air Battery Based on Zinc Peroxide Chemistry. Science 2021, 371, 46–51.
- 2 Haase, F.; Bergmann, A.; Jones, T.; Timoshenko, J.; Herzog, A.; Jeon, H.; Rettenmaier, C.; Cuenya, B. Size Effects and Active State Formation of Cobalt Oxide Nanoparticles During the Oxygen Evolution Reaction. Nat. Energy 2022, 7, 765–773.
- 3 Zhao, C.; Liu, J.; Wang, J.; Ren, D.; Li, B.; Zhang, Q. Recent Advances of Noble-Metal-Free Bifunctional Oxygen Reduction and Evolution Electrocatalysts. Chem. Soc. Rev. 2021, 50, 7745–7778.
- 4 Ye, C.; Cheng, H.; Zheng, L.; Lin, J.; Xu, Q.; Qiu, Y.; Pan, Z.; Qiu, Y. Tailoring Metal-Oxygen Bonds Boosts Oxygen Reaction Kinetics for High-Performance Zinc-Air Batteries. Nano Lett. 2023, 23, 1573–1581.
- 5 Zhou, C.; Chen, X.; Liu, S.; Han, Y.; Meng, H.; Jiang, Q.; Zhao, S.; Wei, F.; Sun, J.; Tan, T.; Zhang, R. Superdurable Bifunctional Oxygen Electrocatalyst for High-Performance Zinc-Air Batteries. J. Am. Chem. Soc. 2022, 144, 2694–2704.
- 6 Zhong, W.; Zhao, X.; Qin, J.; Yang, J. An Active Hybrid Electrocatalyst with Synergized Pyridinic Nitrogen-Cobalt and Oxygen Vacancies for Bifunctional Oxygen Reduction and Evolution. Chin. J. Chem. 2021, 39, 655–660.
- 7 Ding, K.; Ye, Y.; Hu, J.; Zhao, L.; Jin, W.; Luo, J.; Cai, S.; Weng, B.; Zou, G.; Hou, H.; Ji, X. Aerophilic Triphase Interface Tuned by Carbon Dots Driving Durable and Flexible Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2023, 15, 28.
- 8 Wang, G.; Chang, J.; Koul, S.; Kushima, A.; Yang, Y. CO2 Bubble-Assisted Pt Exposure in PtFeNi Porous Film for High-Performance Zinc-Air Battery. J. Am. Chem. Soc. 2021, 143, 11595–11601.
- 9 Chandrasekaran, S.; Hu, R.; Yao, L.; Sui, L.; Liu, Y.; Abdelkader, A.; Li, Y.; Ren, X.; Deng, L. Mutual Self-Regulation of d-Electrons of Single Atoms and Adjacent Nanoparticles for Bifunctional Oxygen Electrocatalysis and Rechargeable Zinc-Air Batteries. Nano-Micro Lett. 2023, 15, 48.
- 10 Sim, W.; Nguyen, M.; Huang, Z.; Kheawhom, S.; Wattanakit, C.; Yonezawa, T. Efficient Iron-Cobalt Oxide Bifunctional Electrode Catalysts in Rechargeable High Current Density Zinc-Air Batteries. Nanoscale 2022, 14, 8012–8022.
- 11 Zhang, Y.; Zhang, Z.; Jiang, G.; Mamaghani, A.; Sy, S.; Gao, R.; Jiang, Y.; Deng, Y.; Bai, Z.; Yang, L.; Yu, A.; Chen, Z. Three-Dimensionally Rrdered Mesoporous Co3O4 Decorated with Mg as Bifunctional Oxygen Electrocatalysts for High-Performance Zinc-Air Batteries. Nano Energy 2022, 100, 107425.
- 12 Li, B.; Zhao, C.; Chen, S.; Liu, J.; Chen, X.; Song, L.; Zhang, Q. Framework-Porphyrin-Derived Single-Atom Bifunctional Oxygen Electrocatalysts and their Applications in Zn-Air Batteries. Adv. Mater. 2019, 31, 1900592.
- 13 Yasin, G.; Ali, S.; Ibraheem, S.; Kumar, A.; Tabish, M.; Mushtaq, M.; Ajmal, S.; Arif, M.; Khan, M.; Saad, A.; Qiao, L.; Zhao, W. Simultaneously Engineering the Synergistic-Effects and Coordination-Environment of Dual-Single-Atomic Iron/Cobalt-sites as a Bifunctional Oxygen Electrocatalyst for Rechargeable Zinc-Air Batteries. ACS Catal. 2023, 13, 2313–2325.
- 14 Lei, H.; Ma, L.; Wan, Q.; Huang, Z.; Tan, S.; Wang, Z.; Mai, W. Porous Carbon Nanofibers Confined NiFe Alloy Nanoparticles as Efficient Bifunctional Electrocatalysts for Zn-Air Batteries. Nano Energy 2022, 104, 107941.
- 15 Bo, L.; Nian, F.; Pu, L.; Li, P.; Hu, Y.; Tong, J. Simply Embedding α-Fe2O3/Fe3O4 Nanoparticles in N-Doped Graphitic Carbon Polyhedron Layered Arrays as Excellent Electrocatalyst for Rechargeable Zn-Air Battery. Sep. Purif. Technol. 2023, 312, 123413.
- 16 Dong, Q.; Li, G.; Liu, F.; Ren, J.; Wang, H.; Wang, R. Cu Nanoclusters Activating Ultrafine Fe3N Nanoparticles via the Mott-Schottky Effect for Rechargeable Zinc-Air Batteries. Appl. Catal. B: Environ. 2023, 326, 122415.
- 17 Li, Y.; Liu, Y.; Qian, Q.; Wang, G.; Zhang, G. Supramolecular Assisted one-pot Synthesis of Donut-Shaped CoP@PNC Hybrid Nanostructures as Multifunctional Electrocatalysts for Rechargeable Zn-Air Batteries and Self-Powered Hydrogen Production. Energy Storage Mater. 2020, 28, 27–36.
- 18 Bo, L.; Shi, W.; Nian, F.; Hu, Y.; Pu, L.; Li, P.; Zhang, Z.; Tong, J. Interface Engineering of Co3S4@Co3O4/N, S-Doped Carbon Core@Shell Nanostructures Serve as an Excellent Bifunctional ORR/OER Electrocatalyst for Rechargeable Zn-Air Battery. Sep. Purif. Technol. 2023, 307, 122536.
- 19 Ding, K.; Hu, J.; Jin, W.; Zhao, L.; Liu, Y.; Wu, Z.; Weng, B.; Hou, H.; Ji, X. Dianion Induced Electron Delocalization of Trifunctional Electrocatalysts for Rechargeable Zn-Air Batteries and Self-Powered Water Splitting. Adv. Funct. Mater. 2022, 32, 2201944.
- 20 Qi, Y.; Wu, J.; Xu, J.; Gao, H.; Du, Z.; Liu, B.; Liu, L.; Xiong, D. One-Step Fabrication of a Self-Supported Co@CoTe2 Electrocatalyst for Efficient and Durable Oxygen Evolution Reactions. Inorg. Chem. Front. 2020, 7, 2523–2532.
- 21 Zheng, X.; Han, X.; Cao, Y.; Zhang, Y.; Nordlund, D.; Wang, J.; Chou, S.; Liu, H.; Li, L.; Zhong, C.; Deng, Y.; Hu, W. Identifying Dense NiSe2/CoSe2 Heterointerfaces Coupled with Surface High-Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Adv. Mater. 2020, 32, 2000607.
- 22 Zhu, G.; Xie, X.; Li, X.; Liu, Y.; Shen, X.; Xu, K.; Chen, S. Nanocomposites Based on CoSe2-Decorated FeSe2 Nanoparticles Supported on Reduced Graphene Oxide as High-Performance Electrocatalysts toward Oxygen Evolution Reaction. ACS Appl. Mater. Interfaces 2018, 10, 19258–19270.
- 23 Li, R.; Li, Q.; Xiao, L.; Bai, X.; Ji, S.; Zhang, J.; An, M.; Yang, P. Se-Induced Underpotential Deposition of Amorphous CoSe2 Ultrathin Nanosheet Arrays as High-Efficiency Oxygen Evolution Electrocatalysts for Zinc-Air Batteries. Mater. Today Energy 2021, 22, 100882.
- 24 Zhang, J.; Zhao, Z.; Xia, Z.; Dai, L. A Metal-Free Bifunctional Electrocatalyst for Oxygen Reduction and Oxygen Evolution Reactions. Nat. Nanotechnol. 2015, 10, 444–452.
- 25 Ding, K.; Hu, J.; Luo, J.; Zhao, L.; Jin, W.; Liu, Y.; Wu, Z.; Zou, G.; Hou, H.; Ji, X. Robust Electronic Correlation of Co-CoN4 Hybrid Active Sites for Durable Rechargeable Zn-Air Batteries. Adv. Funct. Mater. 2022, 32, 2207331.
- 26 Ding, K.; Ye, Y.; Hu, J.; Zhao, L.; Jin, W.; Luo, J.; Cai, S.; Weng, B.; Zou, G.; Hou, H.; Ji, X. Aerophilic Triphase Interface Tuned by Carbon Dots Driving Durable and Flexible Rechargeable Zn-Air Batteries. Nano-Micro Lett. 2023, 15, 28.
- 27 Xue, Y.; Guo, Y.; Zhang, Q.; Xie, Z.; Wei, J.; Zhou, Z. MOF-Derived Co and Fe Species Loaded on N-Doped Carbon Networks as Efficient Oxygen Electrocatalysts for Zn-Air Batteries. Nano-Micro Lett. 2022, 14, 162.
- 28 Huang, J.; Chen, Y.; Yang, J.; Zhu, H.; Yang, H. Boosting the Oxygen Reduction Performance of MOF-5-derived Fe-N-C Electrocatalysts via a Dual Strategy of Cation-Exchange and Guest-Encapsulation. Electrochim. Acta 2021, 366, 137408.
- 29 Singh, T.; Das, C.; Bothra, N.; Sikdar, N.; Das, S.; Pati, S.; Maji, T. MOF Derived Co3O4@Co/NCNT Nanocomposite for Electrochemical Hydrogen Evolution, Flexible Zinc-Air Batteries, and Overall Water Splitting. Inorg. Chem. 2020, 59, 3160–3170.
- 30 Guo, Z.; Ma, Y.; Zhao, Y.; Song, Y.; Tang, S.; Wang, Q.; Li, W. Trimetallic ZIFs-Derived Porous Carbon as Bifunctional Electrocatalyst for Rechargeable Zn-Air Battery. J. Power Sources 2022, 542, 231723.
- 31 Arafat, Y.; Azhar, M.; Zhong, Y.; Abid, H.; Tade, M.; Shao, Z. Advances in Zeolite Imidazolate Frameworks (ZIFs) Derived Bifunctional Oxygen Electrocatalysts and Their Application in Zinc-Air Batteries. Adv. Energy Mater. 2021, 11, 2100514.
- 32 Yan, L.; Xu, Y.; Chen, P.; Zhang, S.; Jiang, H.; Yang, L.; Wang, Y.; Zhang, L.; Shen, J.; Zhao, X.; Wang, L. A Freestanding 3D Heterostructure Film Stitched by MOF-Derived Carbon Nanotube Microsphere Superstructure and Reduced Graphene Oxide Sheets: A Superior Multifunctional Electrode for Overall Water Splitting and Zn-Air Batteries, Adv. Mater. 2020, 32, 2003313.
- 33 Hu, J.; Qin, Y.; Sun, H.; Ma, Y.; Lin, L.; Peng, Y.; Zhong, J.; Chen, M.; Zhao, X.; Deng, Z. Combining Multivariate Electrospinning with Surface MOF Functionalization to Construct Tunable Active Sites toward Trifunctional Electrocatalysis. Small 2021, 18, 2106260.
- 34 Hu, Z.; Dong, S.; He, Q.; Chen, Z.; Yuan, D. Synergetic Nanostructure Engineering and Electronic Modulation of a 3D Hollow Heterostructured NiCo2O4@NiFe-LDH Self-Supporting Electrode for Rechargeable Zn-Air Batteries. Inorg. Chem. 2023, 62, 7471–7482.
- 35 Xiang, Y.; Xu, C.; Fu, T.; Tang, Y.; Li, G.; Xiong, Z.; Guo, C.; Si, Y. Enhanced Bifunctional Catalytic Performance of Nitrogen-Doped Carbon Composite to Oxygen Reduction and Evolution Reactions with the Regulation of Graphene for Rechargeable Zn-Air Batteries. Appl. Surf. Sci. 2022, 575, 151730.
- 36 Lv, C.; Ren, Y.; Li, B.; Lu, Z.; Li, L.; Zhang, X.; Yang, X.; Yu, X. 1,2,4-triazole-assisted Metal-Organic Framework-Derived Nitrogen- Doped Carbon Nanotubes with Encapsulated Co4N Particles as Bifunctional Oxygen Electrocatalysts for Rechargeable Zinc-Air Batteries. J. Colloid Interface Sci. 2023, 645, 618–626.
- 37 Hu, C.; Chen, J.; Wang, Y.; Huang, Y.; Wang, S. A Telluride-Doped Porous Carbon as Highly Efficient Bifunctional Catalyst for Rechargeable Zn-Air Batteries. Electrochim. Acta 2022, 404, 139606.
- 38 Yoon, K.; Hwang, C.; Kim, S.; Jung, J.; Chae, J.; Kim, J.; Lee, K.; Lim, A.; Cho, S.; Singh, J.; Kim, J.; Shin, K.; Moon, B.; Park, H.; Kim, H.; Chae, K.; Ham, H.; Kim, I.; Kim, J. Hierarchically Assembled Cobalt Oxynitride Nanorods and N-Doped Carbon Nanofibers for Efficient Bifunctional Oxygen Electrocatalysis with Exceptional Regenerative Efficiency. ACS Nano 2021, 15, 11218–11230.
- 39 Wang, X.; Zhang, X.; Fu, G.; Tang, Y. Recent Progress of Electrospun Porous Carbon-Based Nanofibers for Oxygen Electrocatalysis. Mater. Today Energy 2021, 22, 100850.
- 40 Li, T.; Li, S.; Liu, Q.; Tian, Y.; Zhang, Y.; Fu, G.; Tang, Y. Hollow Co3O4/CeO2 Heterostructures in Situ Embedded in N-Doped Carbon Nanofibers Enable Outstanding Oxygen Evolution. ACS Sustainable Chem. Eng. 2019, 7, 17950–17957.
- 41 Shi, X.; He, B.; Zhao, L.; Gong, Y.; Wang, R.; Wang, H. FeS2-CoS2 Incorporated into Nitrogen-Doped Carbon Nanofibers to Boost Oxygen Electrocatalysis for Durable Rechargeable Zn-Air Batteries. J. Power Sources 2021, 482, 228955.
- 42 Xu, E.; Li, P.; Quan, J.; Zhu, H.; Wang, L.; Chang, Y.; Sun, Z.; Chen, L.; Yu, D.; Jiang, Y. Dimensional Gradient Structure of CoSe2@CNTs- MXene Anode Assisted by Ether for High-Capacity, Stable Sodium Storage. Nano-Micro Lett. 2021, 13, 1–14.
- 43 Lv, L.; Du, P.; Liu, P.; Li, X.; Wang, Y. Integrating Mixed Metallic Selenides/Nitrogen-Doped Carbon Heterostructures in One-Dimensional Carbon Fibers for Efficient Oxygen Reduction Electrocatalysis. ACS Sustainable Chem. Eng. 2020, 8, 8391–8401.
- 44 Lu, H.; Zhang, Y.; Huang, Y.; Zhang, C.; Liu, T. Reaction Packaging CoSe2 Nanoparticles in N-Doped Carbon Polyhedra with Bifunctionality for Overall Water Splitting. ACS Appl. Mater. Interfaces 2019, 11, 3372–3381.
- 45 Xiao, Q.; Song, Q.; Zheng, K.; Zheng, L.; Zhu, Y.; Chen, Z. CoSe2 Nanodots Confined in Multidimensional Porous Nanoarchitecture Towards Efficient Sodium Ion Storage. Nano Energy 2022, 98, 107326.
- 46 Lee, J.; Saroha, R.; Cho, J. Porous Microspheres Comprising CoSe2 Nanorods Coated with N-Doped Graphitic C and Polydopamine-Derived C as Anodes for Long-Lived Na-Ion Batteries. Nano-Micro Lett. 2022, 14, 113.
- 47 Divya, M.; Praneetha, S.; Lee, Y.; Aravindan, V. Next-Generation Li-Ion Capacitor with High Energy and High Power by Limiting Alloying-Intercalation Process Using SnO2@Graphite Composite as Battery Type Electrode. Compos. B Eng. 2022, 230, 109487.
- 48 Liu, M.; Zhang, X.; Liu, X.; Wu, X.; Ye, X.; Qiao, J.; Sun, Z.; Zhu, X.; Huang, Z. Multienergy-Triggered Composite Phase-Change Materials Based on Graphite Foams Synthesized From Graphite Extracted from Spent Lithium-Ion Batteries. ACS Sustainable Chem. Eng. 2022, 10, 8051–8063.
- 49 Tian, H.; Song, A.; Zhang, P.; Sun, K.; Wang, J.; Sun, B.; Fan, Q.; Shao, G.; Chen, C.; Liu, H.; Li, Y.; Wang, G. High Durability of Fe-N-C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media. Adv. Mater. 2023, 35, 2210714.
- 50 Zhang, Y.; Zhang, X.; Li, Y.; Wang, J.; Kawi, S.; Zhong, Q. FeCo Alloy/N, S Co-Doped Carbon Aerogel Derived from Directional-Casting Cellulose Nanofibers for Rechargeable Liquid Flow and Flexible Zn-Air Batteries. Nano Res. 2023, 16, 6870–6880.
- 51 Zeng, Z.; Fu, G.; Yang, H.; Yan, Y.; Chen, J.; Yu, Z.; Gao, J.; Gan, L.; Liu, B.; Chen, P. Bifunctional N-CoSe2/3D-MXene as Highly Efficient and Durable Cathode for Rechargeable Zn-Air Battery. ACS Mater. Lett. 2019, 1, 432–439.
- 52 Yuan, Z.; Lin, Q.; Li, Y.; Han, W.; Wang, L. Effects of Multiple Ion Reactions Based on a CoSe2/MXene Cathode in Aluminum-Ion Batteries. Adv. Mater. 2023, 35, 2211527.
- 53 Wang, R.; Yang, H.; Lu, N.; Lei, S.; Jia, D.; Wang, Z.; Liu, Z.; Wu, X.; Zheng, H.; Ali, S.; Ma, F.; Peng, S. Precise Identification of Active Sites of a High Bifunctional Performance 3D Co/N-C Catalyst in Zinc-Air Batteries. Chem. Eng. J. 2022, 433, 134500.
- 54 Kuang, J.; Yu, N.; Yang, Z.; Zhang, Y.; Ji, L.; Ye, J.; Huang, W.; Huang, Q.; Tian, N.; Wu, Y.; Sun, S. In Situ Space-Confined Growth of Co3O4 Nanoparticles Inside N-Doped Hollow Porous Carbon Nanospheres as Bifunctional Oxygen Electrocatalysts for High-Performance Rechargeable Zinc-Air batteries. Dalton Trans. 2023, 52, 4371–4381.
- 55 Jiang, Y.; Zou, G.; Hou, H.; Li, J.; Liu, C.; Qiu, X.; Ji, X. Composition Engineering Boosts Voltage Windows for Advanced Sodium-Ion Batteries. ACS Nano 2019, 13, 10787–10797.
- 56 Ding, K.; Hu, J.; Luo, J.; Jin, W.; Zhao, L.; Zheng, L.; Yan, W.; Weng, B.; Hou, H.; Ji, X. Confined N-CoSe2 Active Sites Boost Bifunctional Oxygen Electrocatalysis for Rechargeable Zn-Air Batteries. Nano Energy 2022, 91, 106675.
- 57 Park, S.; Kim, J.; Kang, Y. Excellent Sodium-Ion Storage Performances of CoSe2 Nanoparticles Embedded within N-Doped Porous Graphitic Carbon Nanocube/Carbon Nanotube Composite. Chem. Eng. J. 2017, 328, 546–555.
- 58 Zhang, H.; Zhao, M.; Liu, H.; Shi, S.; Wang, Z.; Zhang, B.; Song, L.; Shang, J.; Yang, Y.; Ma, C.; Zheng, L.; Han, Y.; Huang, W. Ultrastable FeCo Bifunctional Electrocatalyst on Se-Doped CNTs for Liquid and Flexible All-Solid-State Rechargeable Zn-Air Batteries. Nano Lett. 2021, 21, 2255–2264.
- 59 Wang, K.; Lin, Z.; Tang, Y.; Tang, Z.; Tao, C.; Qin, D.; Tian, Y. Selenide/Sulfide Heterostructured NiCo2Se4/NiCoS4 for Oxygen Evolution Reaction, Hydrogen Evolution Reaction, Water Splitting and Zn-Air Batteries. Electrochim. Acta 2021, 368, 137584.
- 60 Zhang, W.; Guo, X.; Li, C.; Xue, J.; Xu, W.; Niu, Z.; Gu, H.; Redshaw, C.; Lang, J. Ultralong Nitrogen/Sulfur Co-Doped Carbon Nano-Hollow-Sphere Chains with Encapsulated Cobalt Nanoparticles for Highly Efficient Oxygen Electrocatalysis. Carbon Energy 2023, 5, e317.
- 61 Liu, X.; Wu, J.; Luo, Z.; Liu, P.; Tian, Y.; Wang, X.; Li, H. Co2P-Assisted Atomic Co-N4 Active Sites with a Tailored Electronic Structure Enabling Efficient ORR/OER for Rechargeable Zn-Air Batteries. ACS Appl. Mater. Interfaces 2023, 15, 9240–9249.
- 62 Zong, L.; Li, P.; Lu, F.; Wang, C.; Fan, K.; Li, Z.; Wang, L. Assembling Amorphous Metal-Organic Frameworks onto Heteroatom-Doped Carbon Spheres for Remarkable Bifunctional Oxygen Electrocatalysis. Adv. Funct. Mater. 2023, 33, 2301013.
- 63 Lei, H.; Wang, Z.; Yang, F.; Huang, X.; Liu, J.; Liang, Y.; Xie, J.; Javed, M.; Lu, X.; Tan, S.; Mai, W. NiFe Nanoparticles Embedded N-Doped Carbon Nanotubes as High-Efficient Electrocatalysts for Wearable Solid-State Zn-Air Batteries. Nano Energy 2020, 68, 104293.
- 64 Yao, X.; Wang, X.; Sun, L.; Li, L.; Kan, E.; Ouyang, B.; Zhang, W. Popcorn-Like Co3O4 Nanoparticles Confined in a Three-Dimensional Hierarchical N-Doped Carbon Nanotube Network as a Highly-Efficient Trifunctional Electrocatalyst for Zinc-Air Batteries and Water Splitting Devices. Inorg. Chem. Front. 2022, 9, 2517–2529.
- 65 Zhou, L.; Zhang, C.; Zhang, Y.; Li, Z.; Shao, M. Host Modification of Layered Double Hydroxide Electrocatalyst to Boost the Thermodynamic and Kinetic Activity of Oxygen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2009743.
- 66
Lin, X.; Chen, L.; Zhong, X.; BaQais, A.; Dang, W.; Amin, M,; Huang, H.; Li, H.; Liang, G.; Liu, G. N-Doped Bimetallic Phosphides Composite Catalysts Derived from Metal–Organic Frameworks for Electrocatalytic Water Splitting. Adv. Compos. Hybrid Mater. 2023, 6, 79.
10.1007/s42114-023-00660-1 Google Scholar
- 67 Li, Z.; Ji, S.; Xu, C.; Leng, L.; Liu, H.; Horton, J.; Du, L.; Gao, J.; He, C.; Qi, X.; Xu, Q.; Zhu, J. Engineering the Electronic Structure of Single-Atom Iron Sites with Boosted Oxygen Bifunctional Activity for Zinc-Air Batteries. Adv. Mater. 2023, 35, 2209644.
- 68 Liu, S.; Wan, X.; Sun, Y.; Li, S.; Guo, X.; Li, M.; Yin, R.; Kong, Q.; Kong, J.; Zhang, J. Cobalt-Based Multicomponent Nanoparticles Supported on N-Doped Graphene as Advanced Cathodic Catalyst for Zinc-Air Batteries. Int. J. Miner. Metall. Mater. 2022, 29, 2212–2220.
- 69 Chen, P.; Tai, Y.; Wu, H.; Gao, Y.; Chen, J.; Cheng, J. Novel Confinement Combustion Method of Nanosized WC/C for Efficient Electrocatalytic Oxygen Reduction. Int. J. Miner. Metall. Mater. 2022, 29, 1627–1634.