Recent Progress in All-Solution-Processed Organic Solar Cells
Yixuan Xu
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004 China
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorQian Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorWentao Zou
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorXu Zhang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorYanna Sun
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorYuanyuan Kan
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorPing Cai
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004 China
Search for more papers by this authorCorresponding Author
Ke Gao
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
E-mail: [email protected]Search for more papers by this authorYixuan Xu
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004 China
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorQian Wang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorWentao Zou
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorXu Zhang
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorYanna Sun
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorYuanyuan Kan
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
Search for more papers by this authorPing Cai
School of Materials Science and Engineering & Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin, Guangxi, 541004 China
Search for more papers by this authorCorresponding Author
Ke Gao
Shandong Provincial Key Laboratory for Science of Material Creation and Energy Conversion, Science Center for Material Creation and Energy Conversion, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong, 266237 China
E-mail: [email protected]Search for more papers by this authorComprehensive Summary
All-solution-processed organic solar cells (OSCs) (from the bottom electrode to the top electrode) are highly attractive thanks to their low cost, lightweight and high-throughput production. However, achieving highly efficient all-solution-processed OSCs remains a significant challenge. One of the key issues is the lack of high-quality solution-processed electrode systems that can replace indium tin oxide (ITO) and vacuum-deposited metal electrodes. In this paper, we comprehensively review recent advances in all-solution-processed OSCs, and classified the devices as the top electrode materials, including silver nanowires (AgNWs), conducting polymers and composite conducting materials. The correlation between electrode materials, properties of electrodes, and device performance in all-solution-processed OSCs is elucidated. In addition, the critical roles of the active layer and interface layer are also discussed. Finally, the prospects and challenges of all-solution-processed OSCs are presented.
References
- 1 Di Carlo Rasi, D.; Janssen, R. A. J. Advances in solution-processed multijunction organic solar cells. Adv. Mater. 2019, 31, 1806499.
- 2 Qin, J.; Lan, L.; Chen, S.; Huang, F.; Shi, H.; Chen, W.; Xia, H.; Sun, K.; Yang, C. Recent progress in flexible and stretchable organic solar cells. Adv. Funct. Mater. 2020, 30, 2002529.
- 3 Sun, Y.; Meng, L.; Wan, X.; Guo, Z.; Ke, X.; Sun, Z.; Zhao, K.; Zhang, H.; Li, C.; Chen, Y. Flexible High-Performance and Solution-Processed Organic Photovoltaics with Robust Mechanical Stability. Adv. Funct. Mater. 2021, 31, 2010000.
- 4 Pang, B.; Liao, C.; Xu, X.; Yu, L.; Li, R.; Peng, Q. Benzo [d] thiazole Based Wide Bandgap Donor Polymers Enable 19.54% Efficiency Organic Solar Cells Along with Desirable Batch-to-batch Reproducibility and General Applicability. Adv. Mater. 2023, 35, 2300631.
- 5 Deng, M.; Xu, X.; Duan, Y.; Yu, L.; Li, R.; Peng, Q. Y-type Non-fullerene Acceptors with Outer Branched Side Chains and Inner Cyclohexane Side Chains for 19.36% Efficiency Polymer Solar Cells. Adv. Mater. 2023, 35, 2210760.
- 6 Zhan, L.; Li, S.; Li, Y.; Sun, R.; Min, J.; Chen, Y.; Fang, J.; Ma, C. Q.; Zhou, G.; Zhu, H. Manipulating charge transfer and transport via intermediary electron acceptor channels enables 19.3% efficiency organic photovoltaics. Adv. Energy Mater. 2022, 12, 2201076.
- 7 He, C.; Pan, Y.; Ouyang, Y.; Shen, Q.; Gao, Y.; Yan, K.; Fang, J.; Chen, Y.; Ma, C.-Q.; Min, J. Manipulating the D: A interfacial energetics and intermolecular packing for 19.2% efficiency organic photovoltaics. Energy Environ. Sci. 2022, 15, 2537–2544.
- 8 Chen, H.; Zhang, Z.-G.; Gao, F. Solidification of solvent additive for stable binary polymer solar cells with ∼19% efficiency. Sci. China Mater. 2023, 66, 2523–2524.
- 9
Guo, C.; Fu, Y.; Li, D.; Wang, L.; Zhou, B.; Chen, C.; Zhou, J.; Sun, Y.; Gan, Z.; Liu, D. Polycrystalline Polymer Donor as Pre-Aggregate Toward Ordered Molecular Aggregation for 19.3% Efficiency Binary Organic Solar Cells. Adv. Mater. 2023, 2304921.
10.1002/adma.202304921 Google Scholar
- 10 Wang, J.; Wang, Y.; Bi, P.; Chen, Z.; Qiao, J.; Li, J.; Wang, W.; Zheng, Z.; Zhang, S.; Hao, X. Binary organic solar cells with 19.2% efficiency enabled by solid additive. Adv. Mater. 2023, 35, 2301583.
- 11 Gao, J.; Yu, N.; Chen, Z.; Wei, Y.; Li, C.; Liu, T.; Gu, X.; Zhang, J.; Wei, Z.; Tang, Z. Over 19.2% efficiency of organic solar cells enabled by precisely tuning the charge transfer state via donor alloy strategy. Adv. Sci. 2022, 9, 2203606.
- 12 Berny, S.; Blouin, N.; Distler, A.; Egelhaaf, H. J.; Krompiec, M.; Lohr, A.; Lozman, O. R.; Morse, G. E.; Nanson, L.; Pron, A. Solar trees: first large-scale demonstration of fully solution coated, semitransparent, flexible organic photovoltaic modules. Adv. Sci. 2016, 3, 1500342.
- 13 Brabec, C. J.; Durrant, J. R. Solution-processed organic solar cells. MRS Bull. 2008, 33, 670–675.
- 14 Jiang, Y.; Dong, X.; Sun, L.; Liu, T.; Qin, F.; Xie, C.; Jiang, P.; Hu, L.; Lu, X.; Zhou, X.; Meng, W.; Li, N.; Brabec, C. J. An alcohol-dispersed conducting polymer complex for fully printable organic solar cells with improved stability. Nat. Energy 2022, 7, 352–359.
- 15 Wang, G.; Adil, M. A.; Zhang, J.; Wei, Z. Large-area organic solar cells: material requirements, modular designs, and printing methods. Adv. Mater. 2019, 31, 1805089.
- 16 Huseynova, G.; Hyun Kim, Y.; Lee, J.-H.; Lee, J. Rising advancements in the application of PEDOT: PSS as a prosperous transparent and flexible electrode material for solution-processed organic electronics. J. Inf. Disp. 2020, 21, 71–91.
- 17 Bellani, S.; Bartolotta, A.; Agresti, A.; Calogero, G.; Grancini, G.; Di Carlo, A.; Kymakis, E.; Bonaccorso, F. Solution-processed two-dimensional materials for next-generation photovoltaics. Chem. Soc. Rev. 2021, 50, 11870–11965.
- 18 Hermerschmidt, F.; Choulis, S. A.; List-Kratochvil, E. J. W. Implementing Inkjet-Printed Transparent Conductive Electrodes in Solution-Processed Organic Electronics. Adv. Mater. Technol. 2019, 4, 1800474.
- 19 Seo, J. H.; Um, H.-D.; Shukla, A.; Hwang, I.; Park, J.; Kang, Y.-C.; Kim, C. S.; Song, M.; Seo, K. Low-temperature solution-processed flexible organic solar cells with PFN/AgNWs cathode. Nano Energy 2015, 16, 122–129.
- 20 Xie, C.; Xiao, C.; Fang, J.; Zhao, C.; Li, W. Core/shell AgNWs@SnOx electrodes for high performance flexible indoor organic solar cells with > 25% efficiency. Nano Energy 2023, 107, 108153.
- 21 Kim, Y. H.; Sachse, C.; Machala, M. L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT:PSS electrode with optimized solvent and thermal post-treatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081.
- 22 Alemu, D.; Wei, H.-Y.; Ho, K.-C.; Chu, C.-W. Highly conductive PEDOT: PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ. Sci. 2012, 5, 9662–9671.
- 23 Xie, C.; Liu, Y.; Wei, W.; Zhou, Y. Large-Area Flexible Organic Solar Cells with a Robust Silver Nanowire-Polymer Composite as Transparent Top Electrode. Adv. Funct. Mater. 2023, 33, 2210675.
- 24 Yu, Z.; Li, L.; Zhang, Q.; Hu, W.; Pei, Q. Silver nanowire-polymer composite electrodes for efficient polymer solar cells. Adv. Mater. 2011, 23, 4453–4457.
- 25 Zhu, Y.; Deng, Y.; Yi, P.; Peng, L.; Lai, X.; Lin, Z. Flexible transparent electrodes based on silver nanowires: Material synthesis, fabrication, performance, and applications. Adv. Mater. Technol. 2019, 4, 1900413.
- 26 Verboven, I.; Silvano, J.; Elen, K.; Pellaers, H.; Ruttens, B.; D'Haen, J.; Van Bael, M. K.; Hardy, A.; Deferme, W. Ultrasonic Spray Coating of Silver Nanowire-Based Electrodes for Organic Light-Emitting Diodes. Adv. Eng. Mater. 2022, 24, 2100808.
- 27
Zhang, F.; Johansson, M.; Andersson, M. R.; Hummelen, J. C.; Inganäs, O. Polymer photovoltaic cells with conducting polymer anodes. Adv. Mater. 2002, 14, 662–665.
10.1002/1521-4095(20020503)14:9<662::AID-ADMA662>3.0.CO;2-N CAS PubMed Web of Science® Google Scholar
- 28 Groenendaal, L.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Poly (3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv. Mater. 2000, 12, 481–494.
- 29 Yin, Z.; Wei, J.; Zheng, Q. Interfacial materials for organic solar cells: recent advances and perspectives. Adv. Sci. 2016, 3, 1500362.
- 30 Kan, B.; Zhang, Q.; Li, M.; Wan, X.; Ni, W.; Long, G.; Wang, Y.; Yang, X.; Feng, H.; Chen, Y. Solution-processed organic solar cells based on dialkylthiol-substituted benzodithiophene unit with efficiency near 10%. J. Am. Chem. Soc. 2014, 136, 15529–15532.
- 31 Sun, Y.; Nian, L.; Kan, Y.; Ren, Y.; Chen, Z.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H.; Li, J. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.
- 32 Zhao, F.; Wang, C.; Zhan, X. Morphology control in organic solar cells. Adv. Energy Mater. 2018, 8, 1703147.
- 33 Tang, H.; Bai, Y.; Zhao, H.; Qin, X.; Hu, Z.; Zhou, C.; Huang, F.; Cao, Y. Interface Engineering for Highly Efficient Organic Solar Cells. Adv. Mater. 2023, 2212236.
- 34 Arumugam, S.; Li, Y.; Senthilarasu, S.; Torah, R.; Kanibolotsky, A. L.; Inigo, A. R.; Skabara, P. J.; Beeby, S. P. Fully spray-coated organic solar cells on woven polyester cotton fabrics for wearable energy harvesting applications. J. Mater. Chem. A 2016, 4, 5561–5568.
- 35 Arumugam, S.; Li, Y.; Glanc-Gostkiewicz, M.; Torah, R. N.; Beeby, S. P. Solution processed organic solar cells on textiles. IEEE J. Photovolt. 2018, 8, 1710–1715.
- 36 Guo, F.; Zhu, X.; Forberich, K.; Krantz, J.; Stubhan, T.; Salinas, M.; Halik, M.; Spallek, S.; Butz, B.; Spiecker, E. ITO-free and fully solution-processed semitransparent organic solar cells with high fill factors. Adv. Energy Mater. 2013, 3, 1062–1067.
- 37 Maisch, P.; Tam, K. C.; Lucera, L.; Egelhaaf, H.-J.; Scheiber, H.; Maier, E.; Brabec, C. J. Inkjet printed silver nanowire percolation networks as electrodes for highly efficient semitransparent organic solar cells. Org. Electron. 2016, 38, 139–143.
- 38 Guo, F.; Li, N.; Radmilović, V. V.; Radmilović, V. R.; Turbiez, M.; Spiecker, E.; Forberich, K.; Brabec, C. J. Fully printed organic tandem solar cells using solution-processed silver nanowires and opaque silver as charge collecting electrodes. Energy Environ. Sci. 2015, 8, 1690–1697.
- 39 Sun, L.; Zeng, W.; Xie, C.; Hu, L.; Dong, X.; Qin, F.; Wang, W.; Liu, T.; Jiang, X.; Jiang, Y. Flexible all-solution-processed organic solar cells with high-performance nonfullerene active layers. Adv. Mater. 2020, 32, 1907840.
- 40 Lee, D. J.; Kim, B.; Yun, C.; Kang, M. H. Tailoring PEDOT: PSS polymer electrode for solution-processed inverted organic solar cells. Solid-State Electron 2020, 169, 107808.
- 41 Wang, Y.; Jia, B.; Qin, F.; Wu, Y.; Meng, W.; Dai, S.; Zhou, Y.; Zhan, X. Semitransparent, non-fullerene and flexible all-plastic solar cells. Polymer 2016, 107, 108–112.
- 42 Bihar, E.; Corzo, D.; Hidalgo, T. C.; Rosas-Villalva, D.; Salama, K. N.; Inal, S.; Baran, D. Fully inkjet-printed, ultrathin and conformable organic photovoltaics as power source based on cross-linked PEDOT: PSS electrodes. Adv. Mater. Technol. 2020, 5, 2000226.
- 43 Tong, J.; Xiong, S.; Zhou, Y.; Mao, L.; Min, X.; Li, Z.; Jiang, F.; Meng, W.; Qin, F.; Liu, T. Flexible all-solution-processed all-plastic multijunction solar cells for powering electronic devices. Mater. Horiz. 2016, 3, 452–459.
- 44 Fan, X.; Wen, R.; Xia, Y.; Wang, J.; Liu, X.; Huang, H.; Li, Y.; Zhu, W.; Cheng, Y.; Ma, L. Vacuum-free, all-solution, and all-air processed organic photovoltaics with over 11% efficiency and promoted stability using layer-by-layer codoped polymeric electrodes. Sol. RRL 2020, 4, 1900543.
- 45 Yim, J. H.; Joe, S.-y.; Pang, C.; Lee, K. M.; Jeong, H.; Park, J.-Y.; Ahn, Y. H.; de Mello, J. C.; Lee, S. Fully solution-processed semitransparent organic solar cells with a silver nanowire cathode and a conducting polymer anode. ACS Nano 2014, 8, 2857–2863.
- 46 Koppitz, M.; Wegner, E.; Rödlmeier, T.; Colsmann, A. Hot-Pressed Hybrid Electrodes Comprising Silver Nanowires and Conductive Polymers for Mechanically Robust, All-Doctor-Bladed Semitransparent Organic Solar Cells. Energy Technol. 2018, 6, 1275–1282.
- 47 Nickel, F.; Haas, T.; Wegner, E.; Bahro, D.; Salehin, S.; Kraft, O.; Gruber, P. A.; Colsmann, A. Mechanically robust, ITO-free, 4.8% efficient, all-solution processed organic solar cells on flexible PET foil. Sol. Energy Mater. Sol. Cells 2014, 130, 317–321.
- 48 Czolk, J.; Landerer, D.; Koppitz, M.; Nass, D.; Colsmann, A. Highly Efficient, Mechanically Flexible, Semi-Transparent Organic Solar Cells Doctor Bladed from Non-Halogenated Solvents. Adv. Mater. Technol. 2016, 1, 1600184.
- 49 Huang, J.; Lu, Z.; He, J.; Hu, H.; Liang, Q.; Liu, K.; Ren, Z.; Zhang, Y.; Yu, H.; Zheng, Z. Intrinsically stretchable, semi-transparent organic photovoltaics with high efficiency and mechanical robustness via a full-solution process. Energy Environ. Sci. 2023, 16, 1251–1263.
- 50 Li, W.; Zhang, H.; Shi, S.; Xu, J.; Qin, X.; He, Q.; Yang, K.; Dai, W.; Liu, G.; Zhou, Q. Recent progress in silver nanowire networks for flexible organic electronics. J. Mater. Chem. C 2020, 8, 4636–4674.
- 51 Sun, Y.; Chang, M.; Meng, L.; Wan, X.; Gao, H.; Zhang, Y.; Zhao, K.; Sun, Z.; Li, C.; Liu, S. Flexible organic photovoltaics based on water-processed silver nanowire electrodes. Nat. Electron. 2019, 2, 513–520.
- 52 Tam, K. C.; Kubis, P.; Maisch, P.; Brabec, C. J.; Egelhaaf, H. J. Fully printed organic solar modules with bottom and top silver nanowire electrodes. Prog. Photovolt. 2022, 30, 528–542.
- 53 Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 1–19.
- 54 Ma, R.; Zhou, K.; Sun, Y.; Liu, T.; Kan, Y.; Xiao, Y.; Peña, T. A. D.; Li, Y.; Zou, X.; Xing, Z. Achieving high efficiency and well-kept ductility in ternary all-polymer organic photovoltaic blends thanks to two well miscible donors. Matter 2022, 5, 725–734.
- 55 Fang, Y.; Tong, J.; Zhong, Q.; Chen, Q.; Zhou, J.; Luo, Q.; Zhou, Y.; Wang, Z.; Hu, B. Solution processed flexible hybrid cell for concurrently scavenging solar and mechanical energies. Nano Energy 2015, 16, 301–309.
- 56 Sun, B.; Li, Y. Ubiquitous clean and sustainable energy-driven self-rechargeable batteries realized by and used in organic electronics. J. Mater. Chem. C 2022, 10, 388–412.
- 57 Sun, Y.; Liu, T.; Kan, Y.; Gao, K.; Tang, B.; Li, Y. Flexible organic solar cells: progress and challenges. Small Sci. 2021, 1, 2100001.
- 58 Huang, Q.; Shen, W.; Fang, X.; Chen, G.; Yang, Y.; Huang, J.; Tan, R.; Song, W. Highly thermostable, flexible, transparent, and conductive films on polyimide substrate with an AZO/AgNW/AZO structure. ACS Appl. Mater. Interfaces 2015, 7, 4299–4305.
- 59 Wang, Y.; Chen, Q.; Zhang, G.; Xiao, C.; Wei, Y.; Li, W. Ultrathin flexible transparent composite electrode via semi-embedding silver nanowires in a colorless polyimide for high-performance ultraflexible organic solar cells. ACS Appl. Mater. Interfaces 2022, 14, 5699–5708.
- 60 Yang, Y.; Xu, B.; Hou, J. Solution-processed silver nanowire as flexible transparent electrodes in organic solar cells. Chin. J. Chem. 2021, 39, 2315–2329.
- 61 Zhao, F.; Zhang, H.; Zhang, R.; Yuan, J.; He, D.; Zou, Y.; Gao, F. Emerging approaches in enhancing the efficiency and stability in non-fullerene organic solar cells. Adv. Energy Mater. 2020, 10, 2002746.
- 62 Fan, X.; Xu, B.; Liu, S.; Cui, C.; Wang, J.; Yan, F. Transfer-printed PEDOT: PSS electrodes using mild acids for high conductivity and improved stability with application to flexible organic solar cells. ACS Appl. Mater. Interfaces 2016, 8, 14029–14036.
- 63 Fan, X.; Nie, W.; Tsai, H.; Wang, N.; Huang, H.; Cheng, Y.; Wen, R.; Ma, L.; Yan, F.; Xia, Y. PEDOT:PSS for flexible and stretchable electronics: modifications, strategies, and applications. Adv. Sci. 2019, 6, 1900813.
- 64 Zhao, F.; Zhou, J.; He, D.; Wang, C.; Lin, Y. Low-cost materials for organic solar cells. J. Mater. Chem. C 2021, 9, 15395–15406.
- 65 Xue, R.; Zhang, J.; Li, Y.; Li, Y. Organic solar cell materials toward commercialization. Small 2018, 14, 1801793.
- 66 Wu, Y.; Zheng, Y.; Yang, H.; Sun, C.; Dong, Y.; Cui, C.; Yan, H.; Li, Y. Rationally pairing photoactive materials for high-performance polymer solar cells with efficiency of 16.53%. Sci. China Chem. 2020, 63, 265–271.
- 67 Liu, B.; Sun, H.; Lee, J.-W.; Jiang, Z.; Qiao, J.; Wang, J.; Yang, J.; Feng, K.; Liao, Q.; An, M. Efficient and stable organic solar cells enabled by multicomponent photoactive layer based on one-pot polymerization. Nat. Commun. 2023, 14, 967.
- 68 Sun, C.; Pan, F.; Bin, H.; Zhang, J.; Xue, L.; Qiu, B.; Wei, Z.; Zhang, Z.-G.; Li, Y. A low cost and high performance polymer donor material for polymer solar cells. Nat. Commun. 2018, 9, 743.
- 69 Kang, Q.; Ye, L.; Xu, B.; An, C.; Stuard, S. J.; Zhang, S.; Yao, H.; Ade, H.; Hou, J. A printable organic cathode interlayer enables over 13% efficiency for 1-cm2 organic solar cells. Joule 2019, 3, 227–239.
- 70 Wu, Z.; Sun, C.; Dong, S.; Jiang, X.-F.; Wu, S.; Wu, H.; Yip, H.-L.; Huang, F.; Cao, Y. n-Type water/alcohol-soluble naphthalene diimide-based conjugated polymers for high-performance polymer solar cells. J. Am. Chem. Soc. 2016, 138, 2004–2013.
- 71 Zhang, Z.-G.; Qi, B.; Jin, Z.; Chi, D.; Qi, Z.; Li, Y.; Wang, J. Perylene diimides: a thickness-insensitive cathode interlayer for high performance polymer solar cells. Energy Environ. Sci. 2014, 7, 1966–1973.
- 72 Yao, J.; Qiu, B.; Zhang, Z.-G.; Xue, L.; Wang, R.; Zhang, C.; Chen, S.; Zhou, Q.; Sun, C.; Yang, C. Cathode engineering with perylene- diimide interlayer enabling over 17% efficiency single-junction organic solar cells. Nat. Commun. 2020, 11, 2726.
- 73 Yao, J.; Ding, S.; Zhang, R.; Bai, Y.; Zhou, Q.; Meng, L.; Solano, E.; Steele, J. A.; Roeffaers, M. B. J.; Gao, F. Fluorinated Perylene-Diimides: Cathode Interlayers Facilitating Carrier Collection for High-Performance Organic Solar Cells. Adv. Mater. 2022, 34, 2203690.
- 74 Cai, P.; Song, C.; Lei, S.; Yu, K.; Ding, L.; Wang, D.; Chen, G.; Peng, H.; Li, B.; Wang, X. A robust and thickness-insensitive hybrid cathode interlayer for high-efficiency and stable inverted organic solar cells. J. Mater. Chem. A 2023, 11, 18723–18732.
- 75 Zhang, M.; Bai, Y.; Sun, C.; Xue, L.; Wang, H.; Zhang, Z.-G. Perylene- diimide derived organic photovoltaic materials. Sci. China Chem. 2022, 65, 462–485.