Stereoselective Synthesis and Immunological Evaluation of Common O-antigen of P. mirabilis OE and P. vulgaris TG103
Xiaopei Wu
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
‡These authors contributed equally.
Search for more papers by this authorJinsheng Lai
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
‡These authors contributed equally.
Search for more papers by this authorKexin Yang
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
‡These authors contributed equally.
Search for more papers by this authorYunxia Xue
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorJinxi Liao
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorLiming Wang
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorJian-song Sun
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorCorresponding Author
Jing Hu
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jian Yin
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qingju Zhang
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorXiaopei Wu
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
‡These authors contributed equally.
Search for more papers by this authorJinsheng Lai
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
‡These authors contributed equally.
Search for more papers by this authorKexin Yang
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
‡These authors contributed equally.
Search for more papers by this authorYunxia Xue
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorJinxi Liao
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorLiming Wang
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Search for more papers by this authorJian-song Sun
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
Search for more papers by this authorCorresponding Author
Jing Hu
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jian Yin
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, and Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Qingju Zhang
National Research Centre for Carbohydrate Synthesis, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, Jiangxi, 330022 China
E-mail: [email protected]; [email protected]; [email protected]Search for more papers by this authorComprehensive Summary
Proteus species especially Proteus mirabilis and Proteus vulgaris are zoonotic pathogens which can cause public health disease. Owing to their antibiotic-resistance, developing vaccines against these pathogens is urgently required. Herein, we describe the first synthesis of the common O-antigen of Proteus mirabilis OE and Proteus vulgaris TG 103. The repeating unit incorporates two challenging 1,2-cis-glycosidic bonds: the 1,2-cis-2-acetamido-2-deoxy-glucosidic bonds were successfully constructed by use of conformation-restrained 2-nitroglucal donor under bifunctional organothiourea catalysis; while the 1,2-cis-2-acetamido-2-deoxy-galactosidic bonds were formed by use of di-tert-butylsilylidene protected 2-azidogalactose donors. The synthetic fragments were screened by glycan microarray with immunized rabbit sera against purified LPS from Proteus mirabilis O54. The results revealed that the synthetic common O-antigens both hexasaccharide 2 and nonasaccharide 3 can strongly bind with the IgG antibodies (Abs) in the sera, which is highly valuable for further immunological investigation in synthetic carbohydrate-based vaccine development.
Supporting Information
Filename | Description |
---|---|
cjoc202200638-sup-0001-Supinfo.pdfPDF document, 14.5 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Tacconelli, E.; Magrini, N. Global Priority List of Antibiotic-Resistant Bacteria to Guide Research, Discovery, and Development of New Antibiotics, World Health Organization, 2017.
- 2 Hamilton, A. L.; Michael A. Kamm; Ng, S. C.; Morrisond, M. Proteus spp. as Putative Gastrointestinal Pathogens. Clin. Microbiol. Rev. 2018, 31, e00085-17.
- 3 Ogunleye, A. O.; Carlson, S. Drug Resistant Proteus mirabilis and Proteus vulgaris Isolated from Rats Captured from Some Poultry Houses in Ibadan, OyoState, Nigeria and their Public Health Importance. Afr. J. Biomed. Res. 2016, 19, 261–266.
- 4 Shelenkov, A.; Petrova, L.; Fomina, V.; Zamyatin, M.; Mikhaylova, Y.; Akimkin, V. Multidrug-Resistant Proteus mirabilis Strain with Cointegrate Plasmid. Microorganisms 2020, 8, 1775.
- 5 O'Brien, V. P.; Hannan, T. J.; Nielsen, H. V.; Hultgren, S. J. Drug and Vaccine Development for the Treatment and Prevention. Microbiol. Spectr. 2016, 4, UTI-0013-2012.
- 6 Schaffer, J. N.; Pearson, M. M. Proteus mirabilis and Urinary Tract Infections. Microbiol. Spectr. 2015, 3, UTI-0017-2013.
- 7 Parke, J. C. Capsular polysaccharide of Haemophilus influenzae type b as a vaccine. Pediatr. Infect. Dis. J. 1987, 6, 795–798.
- 8 Klugman, K. P.; Gilbertson, I. T.; Koornhof, H. J.; Robbins, J. B.; Schneerson, R.; Schulz, D.; Cadoz, M.; Armand, J. Protective activity of Vi capsular polysaccharide vaccine against typhoid fever. Lancet 1987, 2, 1165–1169.
- 9 Santosham, M. Prevention of Haemophilus influenzae type b disease. Vaccine 1993, 11, S52–S57.
- 10 Decker, M. D.; Edwards, K. M. Haemophilus influenzae type b vaccines: history, choice and comparisons. Pediatr. Infect. Dis. J. 1998, 17, S113–S116.
- 11 Geno, K. A.; Gilbert, G. L.; Song, J. Y.; Skovsted, I. C.; Klugman, K. P.; Jones, C.; Konradsen, H. B.; Nahm, M. H. Pneumococcal Capsules and Their Types: Past, Present, and Future. Clin. Microbiol. Rev. 2015, 28, 871–899.
- 12 Eskola, J.; Takala, A.; Käyhty, H. Haemophilus influenzae type b polysaccharide-protein conjugate vaccines in children. Curr. Opin. Pediatr. 1993, 5, 55–59.
- 13 Adamo, R. Advancing Homogeneous Antimicrobial Glycoconjugate Vaccines. Acc. Chem. Res. 2017, 50, 1270–1279.
- 14 Jaurigue, J. A.; Seeberger, P. H. Parasite Carbohydrate Vaccines. Front. Cell Infect. Microbiol. 2017, 7, 248.
- 15 Micoli, F.; Costantino, P.; Adamo, R. Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol. Rev. 2018, 42, 388–423.
- 16 Micoli, F.; Del Bino, L.; Alfini, R.; Carboni, F.; Romano, M. R.; Adamo, R. Glycoconjugate vaccines: current approaches towards faster vaccine design. Expert Rev. Vaccines 2019, 18, 881–895.
- 17 Pozsgay, V. Recent developments in synthetic oligosaccharide-based bacterial vaccines. Curr. Top. Med. Chem. 2008, 8, 126–140.
- 18 Li, R.; Yu, H.; Chen, X. Recent progress in chemical synthesis of bacterial surface glycans. Curr. Opin. Chem. Biol. 2020, 58, 121–136.
- 19 Li, W.-H.; Li, Y.-M. Chemical Strategies to Boost Cancer Vaccines. Chem. Rev. 2020, 120, 11420–11478.
- 20 Seeberger, P. H. Discovery of Semi- and Fully-Synthetic Carbohydrate Vaccines Against Bacterial Infections Using a Medicinal Chemistry Approach. Chem. Rev. 2021, 121, 3598–3626.
- 21 Mishra, N.; Tiwari, V. K.; Schmidt, R. R. Recent trends and challenges on carbohydrate-based molecular scaffolding: general consideration toward impact of carbohydrates in drug discovery and development. In Carbohydrates in Drug Discovery and Development, ScienceDirect, 2020, pp. 1–69.
- 22 Del Bino, L.; Østerlid, K. E.; Wu, D.-Y.; Nonne, F.; Romano, M. R.; Codée, J.; Adamo, R. Synthetic Glycans to Improve Current Glycoconjugate Vaccines and Fight Antimicrobial Resistance. Chem. Rev. 2022. doi: https://doi.org/10.1021/acs.chemrev.2c00021.
- 23 Knirel, Y. A.; Perepelov, A. V.; Kondakova, A. N.; Senchenkova, S. y. N.; Sidorczyk, Z.; Rozalski, A.; Kaca, W. Structure and serology of O-antigens as the basis for classification of Proteus strains. Innate Immunity 2011, 17, 70–96.
- 24 Kolodziejska, K.; Perepelov, A. V.; Zablotni, A.; Drzewiecka, D.; Senchenkova, S. N.; Zych, K.; Shashkov, A. S.; Knirel, Y. A.; Sidorczyk, Z. Structure of the glycerol phosphate-containing O-polysaccharides and serological studies of the lipopolysaccharides of Proteus mirabilis CCUG 10704 (OE) and Proteus vulgaris TG 103 classified into a new Proteus serogroup, O54. FEMS Immunol. Med. Microbiol. 2006, 47, 267–274.
- 25 Alamuri, P.; Eaton, K. A.; Himpsl, S. D.; Smith, S. N.; Mobley, H. L. T. Vaccination with Proteus Toxic Agglutinin, a Hemolysin-Independent Cytotoxin In Vivo, Protects against Proteus mirabilis Urinary Tract Infection. Infect. Immun. 2009, 77, 632–641.
- 26 Alexei, V. D. 1,2-cis-O-Glycosylation: Methods, Strategies, Principles. Curr. Org. Chem. 2003, 7, 35–79.
- 27 Nigudkar, S. S.; Demchenko, A. V. Stereocontrolled 1,2-cis glycosylation as the driving force of progress in synthetic carbohydrate chemistry. Chem. Sci. 2015, 6, 2687–2704.
- 28 Ling, J.; Bennett, C. S. Recent Developments in Stereoselective Chemical Glycosylation. Asian. J. Org. Chem. 2019, 8, 802–813.
- 29 Mannino, M. P.; Demchenko, A. V. Synthesis of beta-Glucosides with 3-O-Picoloyl-Protected Glycosyl Donors in the Presence of Excess Triflic Acid: Defining the Scope. Chem. - Eur. J. 2020, 26, 2938–2946.
- 30 Schmidt, R. R.; Vankar, Y. D. 2-Nitroglycals as Powerful Glycosyl Donors Application in the Synthesis of Biologically Important Molecules. Acc. Chem. Res. 2008, 41, 1059–1073.
- 31 Parasuraman, K.; Chennaiah, A.; Dubbu, S.; Ibrahim Sheriff, A. K.; Vankar, Y. D. Stereoselective synthesis of substituted 1,2-annulated sugars by domino double-Michael addition reaction. Carbohydr. Res. 2019, 477, 26–31.
- 32 Liu, J. L.; Zhang, Y. T.; Liu, H. F.; Zhou, L.; Chen, J. N-Heterocyclic Carbene Catalyzed Stereoselective Glycosylation of 2-Nitrogalactals. Org. Lett. 2017, 19, 5272–5275.
- 33 Kancharla, P. K.; Vankar, Y. D. Chemistry of 2-nitroglycals: a one-pot three-component stereoselective approach toward 2-C-branched O-galactosides. J. Org. Chem. 2010, 75, 8457–64.
- 34 Pal, K. B.; Guo, A.; Das, M.; Báti, G.; Liu, X.-W. Superbase-Catalyzed Stereo- and Regioselective Glycosylation with 2-Nitroglycals: Facile Access to 2-Amino-2-deoxy-O-glycosides. ACS Catal. 2020, 10, 6707–6715.
- 35 Delaunay, T.; Poisson, T.; Jubault, P.; Pannecoucke, X. 2-Nitroglycals: Versatile Building Blocks for the Synthesis of 2-Aminoglycosides. Eur. J. Org. Chem. 2014, 2014, 7525–7546.
- 36 Medina, S.; Harper, M. J.; Balmond, E. I.; Miranda, S.; Crisenza, G. E.; Coe, D. M.; McGarrigle, E. M.; Galan, M. C. Stereoselective Glycosylation of 2-Nitrogalactals Catalyzed by a Bifunctional Organocatalyst. Org. Lett. 2016, 18, 4222–4225.
- 37 Yoshida, K.; Kanoko, Y.; Takao, K. Kinetically Controlled α-Selective O-Glycosylation of Phenol Derivatives Using 2-Nitroglycals by a Bifunctional Chiral Thiourea Catalyst. Asian J. Org. Chem. 2016, 5, 1230–1236.
- 38 Xiang, S.; Ma, J.; Gorityala, B. K.; Liu, X. W. Stereoselective synthesis of beta-N-glycosides through 2-deoxy-2-nitroglycal. Carbohydr. Res. 2011, 346, 2957–2959.
- 39 Xue, W.; Sun, J.; Yu, B. An Efficient Route toward 2-Amino-β-D- galacto- and -glucopyranosides via Stereoselective Michael-Type Addition of 2-Nitroglycals. J. Org. Chem. 2009, 74, 5079–5082.
- 40 Wan, Y.; Wu, X.; Xue, Y.; Lin, X.-E.; Wang, L.; Sun, J.-S.; Zhang, Q. Stereoselective glycosylation with conformation-constrained 2-Nitroglycals as donors and bifunctional thiourea as catalyst. J. Carbohydr. Chem. 2021, 40, 535–557.
- 41 Wu, X.; Zheng, Z.; Wang, L.; Xue, Y.; Liao, J.; Liu, H.; Liu, D.; Sun, J.-S.; Zhang, Q. Stereoselective Synthesis of 2,3-Diamino-2,3-dideoxyglycosides from 3-O-Acetyl-2-nitroglycals. Eur. J. Org. Chem. 2022, 2022, e202200519.
- 42 Xiao, K.; Hu, Y.; Wan, Y.; Li, X.; Nie, Q.; Yan, H.; Wang, L.; Liao, J.; Liu, D.; Tu, Y.; Sun, J.; Codee, J. D. C.; Zhang, Q. Hydrogen bond activated glycosylation under mild conditions. Chem. Sci. 2022, 13, 1600–1607.
- 43 Nie, Q.; Deng, L.; Tu, Y.; Liu, H.; Sun, J.; Wang, L.; Zhang, Q. Stereoselective Synthesis of 1,1’-2-Amino Thiodisaccharides by Organocatalysis. Eur. J. Org. Chem. 2022, 2022, e202201019.
- 44 Zhang, Q.; Gimeno, A.; Santana, D.; Wang, Z.; Valdes-Balbin, Y.; Rodriguez-Noda, L. M.; Hansen, T.; Kong, L.; Shen, M.; Overkleeft, H. S.; Verez-Bencomo, V.; van der Marel, G. A.; Jimenez-Barbero, J.; Chiodo, F.; Codee, J. D. C. Synthetic, Zwitterionic Sp1 Oligosaccharides Adopt a Helical Structure Crucial for Antibody Interaction. ACS Cent. Sci. 2019, 5, 1407–1416.
- 45 Tian, G.; Hu, J.; Qin, C.; Li, L.; Zou, X.; Cai, J.; Seeberger, P. H.; Yin, J. Chemical Synthesis and Immunological Evaluation of Helicobacter pylori Serotype O6 Tridecasaccharide O-Antigen Containing a dd-Heptoglycan. Angew. Chem. Int. Ed. 2020, 59, 13362–13370.
- 46 Behera, A.; Rai, D.; Kulkarni, S. S. Total Syntheses of Conjugation- Ready Trisaccharide Repeating Units of Pseudomonas aeruginosa O11 and Staphylococcus aureus Type 5 Capsular Polysaccharide for Vaccine Development. J. Am. Chem. Soc. 2020, 142, 456–467.
- 47 Emmadi, M.; Kulkarni, S. S. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5T. J. Org. Chem. 2018, 83, 14323–14337.
- 48 Keith, D. J.; Townsend, S. D. Total Synthesis of the Congested, Bisphosphorylated Morganella morganii Zwitterionic Trisaccharide Repeating Unit. J. Am. Chem. Soc. 2019, 141, 12939–12945.
- 49 Zhang, Y.; Zhang, H.; Zhao, Y.; Guo, Z.; Gao, J. Efficient Strategy for alpha-Selective Glycosidation of d-Glucosamine and Its Application to the Synthesis of a Bacterial Capsular Polysaccharide Repeating Unit Containing Multiple alpha-Linked GlcNAc Residues. Org. Lett. 2020, 22, 1520–1524.
- 50 Zhang, Q.; van Rijssel, E. R.; Walvoort, M. T.; Overkleeft, H. S.; van der Marel, G. A.; Codee, J. D. Acceptor reactivity in the total synthesis of alginate fragments containing alpha-L-guluronic acid and beta-D-mannuronic acid. Angew. Chem. Int. Ed. 2015, 54, 7670–7673.
- 51 Qin, C.; Schumann, B.; Zou, X.; Pereira, C. L.; Tian, G.; Hu, J.; Seeberger, P. H.; Yin, J. Total Synthesis of a Densely Functionalized Plesiomonas shigelloides Serotype 51 Aminoglycoside Trisaccharide Antigen. J. Am. Chem. Soc. 2018, 140, 3120–3127.
- 52 Johnsson, R. A.; Bogojeski, J. J.; Damha, M. J. An evaluation of selective deprotection conditions for the synthesis of RNA on a light labile solid support. Bioorg. Med. Chem. Lett. 2014, 24, 2146–2149.
- 53 Zhang, Q.; Howell, P. L.; Overkleeft, H. S.; Filippov, D. V.; van der Marel, G. A.; Codee, J. D. C. Chemical synthesis of guanosine diphosphate mannuronic acid (GDP-ManA) and its C-4-O-methyl and C-4-deoxy congeners. Carbohydr. Res. 2017, 450, 12–18.
- 54The details for its synthesis, see Supporting Information.
- 55 He, H.; Xu, L.; Sun, R.; Zhang, Y.; Huang, Y.; Chen, Z.; Li, P.; Yang, R.; Xiao, G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG- chitotriomycin, lipochitooligosaccharides and capuramycin. Chem. Sci. 2021, 12, 5143–5151.
- 56 Nyffeler, P. T.; Liang, C.-H.; Koeller, K. M.; Wong, C.-H. The Chemistry of Amine-Azide Interconversion: Catalytic Diazotransfer and Regioselective Azide Reduction. J. Am. Chem. Soc. 2002, 124, 10773–10778
- 57 Zhang, Y.; Gomez-Redondo, M.; Jimenez-Oses, G.; Arda, A.; Overkleeft, H. S.; van der Marel, G. A.; Jimenez-Barbero, J.; Codee, J. D. C. Synthesis and Structural Analysis of Aspergillus fumigatus Galactosaminogalactans Featuring alpha-Galactose, alpha-Galactosamine and alpha-N-Acetyl Galactosamine Linkages. Angew. Chem. Int. Ed. 2020, 59, 12746–12750.
- 58 Wang, P.; Huo, C. X.; Lang, S.; Caution, K.; Nick, S. T.; Dubey, P.; Deora, R.; Huang, X. Chemical Synthesis and Immunological Evaluation of a Pentasaccharide Bearing Multiple Rare Sugars as a Potential Anti-pertussis Vaccine. Angew. Chem. Int. Ed. 2020, 59, 6451–6458.
- 59 Hagen, B.; Ali, S.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Mapping the Reactivity and Selectivity of 2-Azidofucosyl Donors for the Assembly of N-Acetylfucosamine-Containing Bacterial Oligosaccharides. J. Org. Chem. 2017, 82, 848–868.
- 60 Hagen, B.; van Dijk, J. H. M.; Zhang, Q.; Overkleeft, H. S.; van der Marel, G. A.; Codée, J. D. C. Synthesis of the Staphylococcus aureus Strain M Capsular Polysaccharide Repeating Unit. Org. Lett. 2017, 19, 2514–2517.
- 61 Khatuntseva, E. A.; Sherman, A. A.; Tsvetkov, Y. E.; Nifantiev, N. E. Phenyl 2-azido-2-deoxy-1-selenogalactosides: a single type of glycosyl donor for the highly stereoselective synthesis of α- and β-2-azido-2-deoxy-d-galactopyranosides. Tetrahedron Lett. 2016, 57, 708–711.
- 62 Li, W.; Yu, B. Gold-catalyzed glycosylation in the synthesis of complex carbohydrate-containing natural products. Chem. Soc. Rev. 2018, 47, 7954–7984.
- 63 Yu, B. Gold(I)-Catalyzed Glycosylation with Glycosyl o-Alkynylbenzoates as Donors. Acc. Chem. Res. 2018, 51, 507–516.
- 64 Fu, J.; Xu, P.; Yu, B. Total Synthesis of Nucleoside Antibiotics Amicetin, Plicacetin,and Cytosaminomycin A-D. Chin. J. Chem. 2021, 39, 2679–2684.
- 65 Imamura, A.; Ando, H.; Korogi, S.; Tanabe, G.; Muraoka, O.; Ishida, H.; Kiso, M. Di-tert-butylsilylene (DTBS) group-directed α-selective galactosylation unaffected by C-2 participating functionalities. Tetrahedron Lett. 2003, 44, 6725–6728.
- 66 Walvoort, M. T.; Moggre, G. J.; Lodder, G.; Overkleeft, H. S.; Codee, J. D.; van der Marel, G. A. Stereoselective synthesis of 2,3-diamino-2,3- dideoxy-beta-D-mannopyranosyl uronates. J. Org. Chem. 2011, 76, 7301–7315.
- 67 Emmadi, M.; Kulkarni, S. S. Synthesis of Rare Deoxy Amino Sugar Building Blocks Enabled the Total Synthesis of a Polysaccharide Repeating Unit Analogue from the LPS of Psychrobacter cryohalolentis K5(T). J. Org. Chem. 2018, 83, 14323–14337.