Potassium Acetate/18-Crown-6 Pair: Robust and Versatile Catalyst for Synthesis of Polyols from Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides†
Xiaoqing Dou
School of Materials Science and Engineering, Tiangong University, Tianjin, 300387 China
Search for more papers by this authorCorresponding Author
Xiao-Hui Liu
School of Materials Science and Engineering, Tiangong University, Tianjin, 300387 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Bin Wang
Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYue-Sheng Li
Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this authorXiaoqing Dou
School of Materials Science and Engineering, Tiangong University, Tianjin, 300387 China
Search for more papers by this authorCorresponding Author
Xiao-Hui Liu
School of Materials Science and Engineering, Tiangong University, Tianjin, 300387 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Bin Wang
Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYue-Sheng Li
Tianjin Key Lab of Composite & Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350 China
Search for more papers by this author† Dedicated to the Special Issue of Emerging Themes in Polymer Science.
Comprehensive Summary
Efficient synthesis of polyester polyols with tunable molecular weight and microstructures from cyclic anhydride/epoxide mixtures by taking advantage of chain transfer reaction remains a great challenge, because most of the catalysts exhibit poor tolerance to chain transfer agent (CTA). In this contribution, we demonstrated that potassium acetate (KOAc) and 18-crown-6 (18-C-6) combination has great potential in the synthesis of diverse polyester polyols with controllable molecular weight and high-end group fidelity. Compared with KOAc, KOAc/18-C-6 pair could induce a much faster chain transfer between the active and dormant chains, and thus produce polyester polyols with narrow and monomodal distribution. In addition, polyester polyols could be efficiently prepared in laboratory by using commercially available cyclic anhydride without further purification (containing about 2% diacid residual as CTA) with an extremely low catalyst loading ([catalyst pair] : [anhydride] : [epoxide] = 1 : 50000 : 250000, [catalyst pair] = 0.0004 mol%). KOAc/18-C-6 could also promote the self-switchable copolymerization of cyclic anhydride/epoxide/cyclic ester mixtures. Ring- opening copolymerization of cyclic ester was initiated automatically after the full conversion of cyclic anhydride, finally producing polyester polyols with ABA-type block structure.
Supporting Information
Filename | Description |
---|---|
cjoc202200556-sup-0001-Supinfo.pdfPDF document, 3.1 MB |
Appendix S1 Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Rabnawaz, M.; Wyman, I.; Auras, R.; Cheng, S. A roadmap towards green packaging: the current status and future outlook for polyesters in the packaging industry. Green Chem. 2017, 19, 4737–4753.
- 2 Van Zee, N. J.; Coates, G. W. Alternating Copolymerization of Propylene Oxide with Biorenewable Terpene-Based Cyclic Anhydrides: A Sustainable Route to Aliphatic Polyesters with High Glass Transition Temperatures. Angew. Chem. Int. Ed. 2015, 54, 2665–2668.
- 3 Ji, H.-Y.; Wang, B.; Pan, L.; Li, Y.-S. One-Step Access to Sequence- Controlled Block Copolymers by Self-Switchable Organocatalytic Multicomponent Polymerization. Angew. Chem. Int. Ed. 2018, 57, 16888–16892.
- 4 Harrold, N. D.; Li, Y.; Chisholm, M. H. Studies of Ring-Opening Reactions of Styrene Oxide by Chromium Tetraphenylporphyrin Initiators. Mechanistic and Stereochemical Considerations. Macromolecules 2013, 46, 692–698.
- 5 Longo, J. M.; Sanford, M. J.; Coates, G. W. Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides with Discrete Metal Complexes: Structure-Property Relationships. Chem. Rev. 2016, 116, 15167–15197.
- 6 Paul, S.; Zhu, Y.; Romain, C.; Brooks, R.; Saini, P. K.; Williams, C. K. Ring-opening copolymerization (ROCOP): synthesis and properties of polyesters and polycarbonates. Chem. Commun. 2015, 51, 6459–6479.
- 7
Romain, C.; Williams, C. K. Chemoselective Polymerization Control: From Mixed-Monomer Feedstock to Copolymers. Angew. Chem. 2014, 126, 1633–1636.
10.1002/ange.201309575 Google Scholar
- 8 Gandini, A. The irruption of polymers from renewable resources on the scene of macromolecular science and technology. Green Chem. 2011, 13, 1061–1083.
- 9 Mecking, S. Nature or Petrochemistry?-Biologically Degradable Materials. Angew. Chem. Int. Ed. 2004, 43, 1078–1085.
- 10 Nejad, E. H.; Paoniasari, A.; van Melis, C. G. W.; Koning, C. E.; Duchateau, R. Catalytic Ring-Opening Copolymerization of Limonene Oxide and Phthalic Anhydride: Toward Partially Renewable Polyesters. Macromolecules 2013, 46, 631–637.
- 11 Robert, C.; de Montigny, F.; Thomas, C. M. Tandem synthesis of alternating polyesters from renewable resources. Nat. Commun. 2011, 2, 586.
- 12 Nejad, E. H.; Paoniasari, A.; Koning, C. E.; Duchateau, R. Semi-aromatic polyesters by alternating ring-opening copolymerisation of styrene oxide and anhydrides. Polym. Chem. 2012, 3, 1308–1313.
- 13 Hu, L.-F.; Zhang, C.-J.; Chen, D.-J.; Cao, X.-H.; Yang, J.-L.; Zhang, X.-H. Synthesis of High-Molecular-Weight Maleic Anhydride-Based Polyesters with Enhanced Properties. ACS Appl. Polym. Mater. 2020, 2, 5817–5823.
- 14 Hillmyer, M. A.; Tolman, W. B. Aliphatic Polyester Block Polymers: Renewable, Degradable, and Sustainable. Acc. Chem. Res. 2014, 47, 2390–2396.
- 15 Yi, N.; Chen, T. T. D.; Unruangsri, J.; Zhu, Y.; Williams, C. K. Orthogonal functionalization of alternating polyesters: selective patterning of (AB)n sequences. Chem. Sci. 2019, 10, 9974–9980.
- 16 Zhang, X.; Fevre, M.; Jones, G. O.; Waymouth, R. M. Catalysis as an Enabling Science for Sustainable Polymers. Chem. Rev. 2018, 118, 839–885.
- 17 Stößer, T.; Sulley, G. S.; Gregory, G. L.; Williams, C. K. Easy access to oxygenated block polymers via switchable catalysis. Nat. Commun. 2019, 10, 2668.
- 18 Kaluzynski, K.; Pretula, J.; Lewinski, P.; Kaźmierski, S.; Penczek, S. Catalysis in polymerization of cyclic esters. Catalyst and initiator in one molecule. Polymerization of ε-caprolactone. J. Catal. 2020, 392, 97–107.
- 19 Plajer, A. J.; Williams, C. K. Heterocycle/Heteroallene Ring-Opening Copolymerization: Selective Catalysis Delivering Alternating Copolymers. Angew. Chem. Int. Ed. 2022, 61, e202104495.
- 20 Zhang, C.-J.; Yang, J.-L.; Hu, L.-F.; Zhang, X.-H. Anionic Copolymerization of Carbonyl Sulfide with Epoxides via Alkali Metal Alkoxides. Chin. J. Chem. 2018, 36, 625–629.
- 21 Zhang, X.; Sun, Y.; Zhang, C.; Zhang, X. Upcycling Polytetrahydrofuran to Polyester. CCS Chem. 2022, 4, 2176–2211.
- 22 Li, W.-B.; Ren, B.-H.; Gu, G.-G.; Lu, X.-B. Controlled Random Terpolymerization of β-Propiolactone, Epoxides, and CO2 via Regioselective Lactone Ring Opening. CCS Chem. 2022, 4, 344–355.
- 23 Zhao, Y.; Zhu, S.; Li, X.; Zhao, X.; Xu, J.; Xiong, B.; Wang, Y.; Zhou, X.; Xie, X. Aluminum Porphyrin Complex Mediated Auto-Tandem Catalysis for One-Pot Synthesis of Block Copolymers. CCS Chem. 2022, 4, 122–131.
- 24 Chen, C.-M.; Xu, X.; Ji, H.-Y.; Wang, B.; Pan, L.; Luo, Y.; Li, Y.-S. Alkali Metal Carboxylates: Simple and Versatile Initiators for Ring-Opening Alternating Copolymerization of Cyclic Anhydrides/Epoxides. Macromolecules 2021, 54, 713–724.
- 25 Xia, X.; Suzuki, R.; Takojima, K.; Jiang, D.-H.; Isono, T.; Satoh, T. Smart Access to Sequentially and Architecturally Controlled Block Polymers via a Simple Catalytic Polymerization System. ACS Catal. 2021, 11, 5999–6009.
- 26 Lidston, C. A. L.; Abel, B. A.; Coates, G. W. Bifunctional Catalysis Prevents Inhibition in Reversible-Deactivation Ring-Opening Copolymerizations of Epoxides and Cyclic Anhydrides. J. Am. Chem. Soc. 2020, 142, 20161–20169.
- 27 Abbina, S.; Chidara, V. K.; Du, G. Ring-Opening Copolymerization of Styrene Oxide and Cyclic Anhydrides by using Highly Effective Zinc Amido-Oxazolinate Catalysts. ChemCatChem 2017, 9, 1343–1348.
- 28 Fieser, M. E.; Sanford, M. J.; Mitchell, L. A.; Dunbar, C. R.; Mandal, M.; Van Zee, N. J.; Urness, D. M.; Cramer, C. J.; Coates, G. W.; Tolman, W. B. Mechanistic Insights into the Alternating Copolymerization of Epoxides and Cyclic Anhydrides Using a (Salph)AlCl and Iminium Salt Catalytic System. J. Am. Chem. Soc. 2017, 139, 15222–15231.
- 29 Ungpittagul, T.; Jaenjai, T.; Roongcharoen, T.; Namuangruk, S.; Phomphrai, K. Unprecedented Double Insertion of Cyclohexene Oxide in Ring-Opening Copolymerization with Cyclic Anhydrides Catalyzed by a Tin(II) Alkoxide Complex. Macromolecules 2020, 53, 9869–9877.
- 30 Popowski, Y.; Moreno, J. J.; Nichols, A. W.; Hooe, S. L.; Bouchey, C. J.; Rath, N. P.; Machan, C. W.; Tolman, W. B. Mechanistic insight into initiation and regioselectivity in the copolymerization of epoxides and anhydrides by Al complexes. Chem. Commun. 2020, 56, 14027–14030.
- 31 DiCiccio, A. M.; Longo, J. M.; Rodríguez-Calero, G. G.; Coates, G. W. Development of Highly Active and Regioselective Catalysts for the Copolymerization of Epoxides with Cyclic Anhydrides: An Unanticipated Effect of Electronic Variation. J. Am. Chem. Soc. 2016, 138, 7107–7113.
- 32 Abel, B. A.; Lidston, C. A. L.; Coates, G. W. Mechanism-Inspired Design of Bifunctional Catalysts for the Alternating Ring-Opening Copolymerization of Epoxides and Cyclic Anhydrides. J. Am. Chem. Soc. 2019, 141, 12760–12769.
- 33 Plajer, A. J.; Williams, C. K. Heterotrinuclear Ring Opening Copolymerization Catalysis: Structure-activity Relationships. ACS Catal. 2021, 11, 14819–14828.
- 34 Saito, T.; Aizawa, Y.; Yamamoto, T.; Tajima, K.; Isono, T.; Satoh, T. Alkali Metal Carboxylate as an Efficient and Simple Catalyst for Ring- Opening Polymerization of Cyclic Esters. Macromolecules 2018, 51, 689–696.
- 35 Ozen, C.; Satoh, T.; Maeda, S. A theoretical study on the alkali metal carboxylate-promoted L-Lactide polymerization. J. Comput. Chem. 2020, 41, 2197–2202.
- 36 Wan, Z.-Q.; Longo, J. M.; Liang, L.-X.; Chen, H.-Y.; Hou, G.-J.; Yang, S.; Zhang, W.-P.; Coates, G. W.; Lu, X.-B. Comprehensive Understanding of Polyester Stereocomplexation. J. Am. Chem. Soc. 2019, 141, 14780–14787.
- 37 Deacy, A. C.; Gregory, G. L.; Sulley, G. S.; Chen, T. T. D.; Williams, C. K. Sequence Control from Mixtures: Switchable Polymerization Catalysis and Future Materials Applications. J. Am. Chem. Soc. 2021, 143, 10021–10040.
- 38 Sulley, G. S.; Gregory, G. L.; Chen, T. T. D.; Carrodeguas, L. P.; Trott, G.; Santmarti, A.; Lee, K. Y.; Terrill, N. J.; Williams, C. K. Switchable Catalysis Improves the Properties of CO2-Derived Polymers: Poly(cyclohexene carbonate-b-ɛ-decalactone-b-cyclohexene carbonate) Adhesives, Elastomers, and Toughened Plastics. J. Am. Chem. Soc. 2020, 142, 4367–4378.
- 39 Diment, W. T.; Gregory, G. L.; Kerr, R. W. F.; Phanopoulos, A.; Buchard, A.; Williams, C. K. Catalytic Synergy Using Al(III) and Group 1 Metals to Accelerate Epoxide and Anhydride Ring-Opening Copolymerizations. ACS Catal. 2021, 11, 12532–12542.
- 40 Kerr, R. W. F.; Williams, C. K. Zr(IV) Catalyst for the Ring-Opening Copolymerization of Anhydrides (A) with Epoxides (B), Oxetane (B), and Tetrahydrofurans (C) to Make ABB- and/or ABC-Poly(ester-alt- ethers). J. Am. Chem. Soc. 2022, 144, 6882–6893.
- 41 Deacy, A. C.; Moreby, E.; Phanopoulos, A.; Williams, C. K. Co(III)/Alkali-Metal(I) Heterodinuclear Catalysts for the Ring-Opening Copolymerization of CO2 and Propylene Oxide. J. Am. Chem. Soc. 2020, 142, 19150–19160.
- 42 Diment, W. T.; Lindeboom, W.; Fiorentini, F.; Deacy, A. C.; Williams, C. K. Synergic Heterodinuclear Catalysts for the Ring-Opening Copolymerization (ROCOP) of Epoxides, Carbon Dioxide, and Anhydrides. Acc. Chem. Res. 2022, 55, 1997–2010.
- 43 Zhang, B.; Li, H.; Luo, H.; Zhao, J. Ring-opening alternating copolymerization of epichlorohydrin and cyclic anhydrides using single- and two-component metal-free catalysts. Eur. Polym. J. 2020, 134, 109820.
- 44 Li, H.; Luo, H.; Zhao, J.; Zhang, G. Well-Defined and Structurally Diverse Aromatic Alternating Polyesters Synthesized by Simple Phosphazene Catalysis. Macromolecules 2018, 51, 2247–2257.
- 45 Han, B.; Zhang, L.; Liu, B.; Dong, X.; Kim, I.; Duan, Z.; Theato, P. Controllable Synthesis of Stereoregular Polyesters by Organocatalytic Alternating Copolymerizations of Cyclohexene Oxide and Norbornene Anhydrides. Macromolecules 2015, 48, 3431–3437.
- 46 Li, H.; Zhao, J.; Zhang, G. Self-Buffering Organocatalysis Tailoring Alternating Polyester. ACS Macro Lett. 2017, 6, 1094–1098.
- 47 Kou, X.; Li, Y.; Shen, Y.; Li, Z. Metal-Free Ring-Opening Alternating Copolymerization of Epoxides and Cyclic Anhydrides Mediated by a Ternary Phosphazene Base and Carboxylic Acids. Macromol. Chem. Phys. 2019, 220, 1900416.
- 48 Zhang, C.-J.; Cao, X.-H.; Zhang, X.-H. Metal-Free Alternating Copolymerization of Nonstrained γ-Selenobutyrolactone with Epoxides for Selenium-Rich Polyesters. Macromolecules 2020, 53, 203–211.
- 49 Mundil, R.; Kayser, F.; Favrelle-Huret, A.; Stoclet, G.; Zinck, P. Organocatalytic sequential ring-opening polymerization of a cyclic ester and anionic polymerization of a vinyl monomer. Chem. Commun. 2020, 56, 8067–8070.
- 50 Ryzhakov, D.; Printz, G.; Jacques, B.; Messaoudi, S.; Dumas, F.; Dagorne, S.; Le Bideau, F. Organo-catalyzed/initiated ring opening co-polymerization of cyclic anhydrides and epoxides: an emerging story. Polym. Chem. 2021, 12, 2932–2946.
- 51 Ji, H.-Y.; Wang, B.; Pan, L.; Liu, X.-H.; Li, Y.-S. A green synthetic toolbox from organocatalytic alternating copolymerization of renewable epoxides and dihydrocoumarin. J. Polym. Sci. 2022, 1, https://doi. org/ 10.1002/pol.20220082.
- 52 Jiang, X.; Zhao, N.; Li, Z. Stereoselective Ring-Opening Polymerization of rac-Lactide Catalyzed by Squaramide Derived Organocatalysts at Room Temperature. Chin. J. Chem. 2021, 39, 2403–2409.
- 53 Li, K.; Li, Z.; Duan, S.; Shen, Y.; Li, Z. Organobase/urea catalyzed ring opening polymerization of 3-methyl-1,4-dioxan-2-one to prepare chemically recyclable poly(ether ester). J. Polym. Sci. 2021, 1, https://doi.org/10.1002/pol.20210841.
- 54 Kummari, A.; Pappuru, S.; Gupta, P. K.; Chakraborty, D.; Verma, R. S. Metal-free Lewis pair catalyst synergy for fully alternating copolymerization of norbornene anhydride and epoxides: Biocompatible tests for derived polymers. Mater. Today Commun. 2019, 19, 306–314.
- 55 Hong, M.; Chen, J.; Chen, E. Y.-X. Polymerization of Polar Monomers Mediated by Main-Group Lewis Acid-Base Pairs. Chem. Rev. 2018, 118, 10551–10616.
- 56 Wang, B.; Pan, L.; Ma, Z.; Li, Y. Ring-Opening Polymerization with Lewis Pairs and Subsequent Nucleophilic Substitution: A Promising Strategy to Well-Defined Polyethylene-like Polyesters without Transesterification. Macromolecules 2018, 51, 836–845.
- 57 Zhang, J.; Wang, L.; Liu, S.; Kang, X.; Li, Z. A Lewis Pair as Organocatalyst for One-Pot Synthesis of Block Copolymers from a Mixture of Epoxide, Anhydride, and CO2. Macromolecules 2021, 54, 763–772.
- 58 Ji, H.-Y.; Wang, B.; Pan, L.; Li, Y.-S. Lewis pairs for ring-opening alternating copolymerization of cyclic anhydrides and epoxides. Green Chem. 2018, 20, 641–648.
- 59 Zhang, J.; Wang, L.; Liu, S.; Li, Z. Phosphazene/Lewis Acids as Highly Efficient Cooperative Catalyst for Synthesis of High-Molecular- Weight Polyesters by Ring-Opening Alternating Copolymerization of Epoxide and Anhydride. J. Polym. Sci. 2020, 58, 803–810.
- 60 Hu, L.-F.; Chen, D.-J.; Yang, J.-L.; Zhang, X.-H. An Investigation of the Organoborane/Lewis Base Pairs on the Copolymerization of Propylene Oxide with Succinic Anhydride. Molecules 2020, 25, 253.
- 61 Hu, L.-F.; Zhang, C.-J.; Wu, H.-L.; Yang, J.-L.; Liu, B.; Duan, H.-Y.; Zhang, X.-H. Highly Active Organic Lewis Pairs for the Copolymerization of Epoxides with Cyclic Anhydrides: Metal-Free Access to Well-Defined Aliphatic Polyesters. Macromolecules 2018, 51, 3126–3134.
- 62 Li, H.; He, G.; Chen, Y.; Zhao, J.; Zhang, G. One-Step Approach to Polyester-Polyether Block Copolymers Using Highly Tunable Bicomponent Catalyst. ACS Macro Lett. 2019, 8, 973–978.
- 63 Zhu, S.; Zhao, Y.; Ni, M.; Xu, J.; Zhou, X.; Liao, Y.; Wang, Y.; Xie, X. One-Step and Metal-Free Synthesis of Triblock Quaterpolymers by Concurrent and Switchable Polymerization. ACS Macro Lett. 2020, 9, 204–209.
- 64 Liu, S.; Bai, T.; Ni, K.; Chen, Y.; Zhao, J.; Ling, J.; Ye, X.; Zhang, G. Biased Lewis Pairs: A General Catalytic Approach to Ether-Ester Block Copolymers with Unlimited Ordering of Sequences. Angew. Chem. Int. Ed. 2019, 58, 15478–15487.
- 65 Wang, L.; Wang, F.; Zhou, Q.; Wang, Y.; Song, H.; Yang, H. Metal-free Lewis pairs catalysed synthesis of fluorescently labelled polyester- based amphiphilic polymers for biological imaging. Eur. Polym. J. 2022, 166, 111033.
- 66 Zhu, X.; Kou, X. Organic bases and protic acids as binary catalysts for ring-opening alternating copolymerization of epoxides and cycle anhydrides. Chem. Pap. 2022, 76, 2145–2152.
- 67 Ji, H.-Y.; Song, D.-P.; Wang, B.; Pan, L.; Li, Y.-S. Organic Lewis pairs for selective copolymerization of epoxides with anhydrides to access sequence-controlled block copolymers. Green Chem. 2019, 21, 6123–6132.
- 68 Kim, S. E.; Lee, Y.-R.; Kim, M.; Seo, E.; Paik, H.-J.; Kim, J. C.; Jeong, J.-E.; Park, Y. I.; Kim, B.-S.; Lee, S.-H. Highly tunable metal-free ring opening polymerization of glycidol into various controlled topologies catalyzed by frustrated lewis pairs. Polym. Chem. 2022, 13, 1243–1252.
- 69 Chen, X.-L.; Wang, B.; Pan, L.; Li, Y.-S. Synthesis of Unsaturated (Co)polyesters from Ring-Opening Copolymerization by Aluminum Bipyridine Bisphenolate Complexes with Improved Protonic Impurities Tolerance. Macromolecules 2022, 55, 3502–3512.
- 70 Sanford, M. J.; Van Zee, N. J.; Coates, G. W. Reversible-deactivation anionic alternating ring-opening copolymerization of epoxides and cyclic anhydrides: access to orthogonally functionalizable multiblock aliphatic polyesters. Chem. Sci. 2018, 9, 134–142.
- 71 Darensbourg, D. J. Chain transfer agents utilized in epoxide and CO2 copolymerization processes. Green Chem. 2019, 21, 2214–2223.
- 72 Isono, T.; Nakahira, S.; Hsieh, H.-C.; Katsuhara, S.; Mamiya, H.; Yamamoto, T.; Chen, W.-C.; Borsali, R.; Tajima, K.; Satoh, T. Carbohydrates as Hard Segments for Sustainable Elastomers: Carbohydrates Direct the Self-Assembly and Mechanical Properties of Fully Bio- Based Block Copolymers. Macromolecules 2020, 53, 5408–5417.
- 73 Chen, T. T. D.; Carrodeguas, L. P.; Sulley, G. S.; Gregory, G. L.; Williams, C. K. Bio-based and Degradable Block Polyester Pressure-Sensitive Adhesives. Angew. Chem. Int. Ed. 2020, 59, 23450–23455.
- 74 Hu, S.; Dai, G.; Zhao, J.; Zhang, G. Ring-Opening Alternating Copolymerization of Epoxides and Dihydrocoumarin Catalyzed by a Phosphazene Superbase. Macromolecules 2016, 49, 4462–4472.
- 75 Mavroudakis, L.; Duncan, K. D.; Lanekoff, I. Host-Guest Chemistry for Simultaneous Imaging of Endogenous Alkali Metals and Metabolites with Mass Spectrometry. Anal. Chem. 2022, 94, 2391–2398.
- 76 Aspelin, V.; Lidskog, A.; Arribas, C. S.; Hervø-Hansen, S.; Stenqvist, B.; Chudoba, R.; Wärnmark, K.; Lund, M. Counterintuitive Electrostatics upon Metal Ion Coordination to a Receptor with Two Homotopic Binding Sites. J. Am. Chem. Soc. 2022, 144, 2921–2932.
- 77 Chan, A. K.-W.; Wong, K. M.-C.; Yam, V. W.-W. Supramolecular Assembly of Isocyanorhodium(I) Complexes: An Interplay of Rhodium(I)&Rhodium(I) Interactions, Hydrophobic-Hydrophobic Interactions, and Host-Guest Chemistry. J. Am. Chem. Soc. 2015, 137, 6920–6931.
- 78 MacDonald, M. R.; Ziller, J. W.; Evans, W. J. Synthesis of a Crystalline Molecular Complex of Y2+, [(18-crown-6)K][(C5H4SiMe3)3Y]. J. Am. Chem. Soc. 2011, 133, 15914–15917.
- 79 Du, Z.; Ma, J.; Wang, F.; Liu, J.; Xu, J. Oxidation of 5-hydroxymethylfurfural to maleic anhydride with molecular oxygen. Green Chem. 2011, 13, 554–557.
- 80 Zhu, R.; Chatzidimitriou, A.; Liu, B.; Kerwood, D. J.; Bond, J. Q. Understanding the origin of maleic anhydride selectivity during the oxidative scission of levulinic acid. ACS Catal. 2020, 10, 1555–1565