Piezoelectrically Mediated Reactions: From Catalytic Reactions to Organic Transformations
Ziye Ren
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYuhao Peng
Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Hanliang He
The Department of Orthopedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorChengqiang Ding
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJialin Wang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zhao Wang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorZiye Ren
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorYuhao Peng
Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Hanliang He
The Department of Orthopedic Surgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorChengqiang Ding
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorJialin Wang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorCorresponding Author
Zhao Wang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
E-mail: [email protected]; [email protected]Search for more papers by this authorZhengbiao Zhang
State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu, 215123 China
State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, 215123 China
Search for more papers by this authorComprehensive Summary
Recently, piezocatalysis has attracted considerable attention as a new type of renewable mechanical energy conversion technology, which relies on the strain induced polarization of the piezoelectric material. This new technology has been extensively applied in the applications of water splitting, water remediation, gas purification and tumor therapy. Despite the rapid development in the piezocatalysis, the utilization of piezoelectric materials for synthetic purpose is still under exploration. Piezoelectric means to promote organic reactions expand the scope of piezoelectrically mediated reactions and show successes in both organic and polymer synthesis. Herein, we provide a comprehensive review on recent progress of piezoelectrically mediated reactions, catalytic mechanisms and applications in the last few years. The limitations and future directions of this area are also discussed. We believe this review will provide new insights into the underlying mechanism of piezoelectric mediated electron transfer process and guide the design of new chemistry.
References
- 1 Zhou, X.; Shen, B.; Lyubartsev, A.; Zhai, J.; Hedin, N. Semiconducting piezoelectric heterostructures for piezo- and piezophotocatalysis. Nano Energy 2022, 96, 107141.
- 2 Wang, C.; Ma, T.; Zhang, Y.; Huang, H. Versatile Titanates: Classification, Property, Preparation, and Sustainable Energy Catalysis. Adv. Funct. Mater. 2022, 32, 2108350.
- 3 Hu, J.-M.; Pei, R.-J.; Hu, Y.; Zeng, Y.-E Detection of complement C4 with a piezoelectric immunosensor. Chin. J. Chem. 1998, 16, 219–225.
- 4 Wei, H.; Wang, H.; Xia, Y.; Cui, D.; Shi, Y.; Dong, M.; Liu, C.; Ding, T.; Zhang, J.; Ma, Y.; Wang, N.; Wang, Z.; Sun, Y.; Wei, R.; Guo, Z. An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 2018, 6, 12446–12467.
- 5 Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Direct Water Splitting Through Vibrating Piezoelectric Microfibers in Water. J. Phys. Chem. Lett. 2010, 1, 997–1002.
- 6 Wang, Z.; Hu, T.; He, H.; Fu, Y.; Zhang, X.; Sun, J.; Xing, L.; Liu, B.; Zhang, Y.; Xue, X. Enhanced H2 Production of TiO2/ZnO Nanowires Co-Using Solar and Mechanical Energy through Piezo-Photocatalytic Effect. ACS Sustainable Chem. Eng. 2018, 6, 10162–10172.
- 7 You, H.; Wu, Z.; Zhang, L.; Ying, Y.; Liu, Y.; Fei, L.; Chen, X.; Jia, Y.; Wang, Y.; Wang, F.; Ju, S.; Qiao, J.; Lam, C.-H.; Huang, H. Harvesting the Vibration Energy of BiFeO3 Nanosheets for Hydrogen Evolution. Angew. Chem. Int. Ed. 2019, 58, 11779–11784.
- 8 Sun, Y.; Li, X.; Vijayakumar, A.; Liu, H.; Wang, C.; Zhang, S.; Fu, Z.; Lu, Y.; Cheng, Z. Hydrogen Generation and Degradation of Organic Dyes by New Piezocatalytic 0.7BiFeO3–0.3BaTiO3 Nanoparticles with Proper Band Alignment. ACS Appl. Mater. Interfaces 2021, 13, 11050–11057.
- 9 Xu, X.; Jia, Y.; Xiao, L.; Wu, Z. Strong vibration-catalysis of ZnO nanorods for dye wastewater decolorization via piezo-electro-chemical coupling. Chemosphere 2018, 193, 1143–1148.
- 10 Biswas, A.; Saha, S.; Jana, N. R. ZnSnO3 Nanoparticle-Based Piezocatalysts for Ultrasound-Assisted Degradation of Organic Pollutants. ACS Appl. Nano Mater. 2019, 2, 1120–1128.
- 11 Liu, D.; Jin, C.; Shan, F.; He, J.; Wang, F. Synthesizing BaTiO3 Nanostructures to Explore Morphological Influence, Kinetics, and Mechanism of Piezocatalytic Dye Degradation. ACS Appl. Mater. Interfaces 2020, 12, 17443–17451.
- 12 Wu, J.; Qin, N.; Bao, D. Effective enhancement of piezocatalytic activity of BaTiO3 nanowires under ultrasonic vibration. Nano Energy 2018, 45, 44–51.
- 13 Yuan, B.; Wu, J.; Qin, N.; Lin, E.; Bao, D. Enhanced Piezocatalytic Performance of (Ba,Sr)TiO3 Nanowires to Degrade Organic Pollutants. ACS Appl. Nano Mater. 2018, 1, 5119–5127.
- 14 Jiang, T.; Wang, Y.; Guo, Z.; Luo, H.; Zhan, C.; Wang, Y.; Wang, Z.; Jiang, F.; Chen, H. Bi25FeO40/Bi2O2CO3 piezoelectric catalyst with built-in electric fields that was prepared via photochemical self- etching of Bi25FeO40 for 4-chlorophenol degradation. J. Cleaner Prod. 2022, 341, 130908.
- 15 Lan, S.; Feng, J.; Xiong, Y.; Tian, S.; Liu, S.; Kong, L. Performance and Mechanism of Piezo-Catalytic Degradation of 4-Chlorophenol: Finding of Effective Piezo-Dechlorination. Environ. Sci. Technol. 2017, 51, 6560–6569.
- 16 Yang, J.; Ma, D.; Liu, W.; Liao, Y.; Xia, D.; He, C. Efficient Catalytic Elimination of CH3SH by a Wet-Piezotronics System over Ag Cluster-Deposited BaTiO3 with Electronic Metal–Support Interaction. ACS EST Engg. 2022, 2, 1179–1187.
- 17 Meng, F.; Ma, W.; Wang, Y.; Zhu, Z.; Chen, Z.; Lu, G. A tribo-positive Fe@MoS2 piezocatalyst for the durable degradation of tetracycline: degradation mechanism and toxicity assessment. Environ. Sci.: Nano 2020, 7, 1704–1718.
- 18 Ma, J.; Jing, S.; Wang, Y.; Liu, X.; Gan, L.-Y.; Wang, C.; Dai, J.-Y.; Han, X.; Zhou, X. Piezo-Electrocatalysis for CO2 Reduction Driven by Vibration. Adv. Energy Mater. 2022, 12, 2200253.
- 19 Phuong, P. T. T.; Vo, D.-V. N.; Duy, N. P. H.; Pearce, H.; Tsikriteas, Z. M.; Roake, E.; Bowen, C.; Khanbareh, H. Piezoelectric catalysis for efficient reduction of CO2 using lead-free ferroelectric particulates. Nano Energy 2022, 95, 107032.
- 20 Peng, F.; Lin, J.; Li, H.; Liu, Z.; Su, Q.; Wu, Z.; Xiao, Y.; Yu, H.; Zhang, M.; Wu, C.; Wang, W.; Lu, C. Design of piezoelectric ZnO based catalysts for ammonia production from N2 and H2O under ultrasound sonication. Nano Energy 2022, 95, 107020.
- 21 Li, Z.; Zhang, T.; Fan, F.; Gao, F.; Ji, H.; Yang, L. Piezoelectric Materials as Sonodynamic Sensitizers to Safely Ablate Tumors: A Case Study Using Black Phosphorus. J. Phys. Chem. Lett. 2020, 11, 1228–1238.
- 22 Zhu, P.; Chen, Y.; Shi, J. Piezocatalytic Tumor Therapy by Ultrasound-Triggered and BaTiO3-Mediated Piezoelectricity. Adv. Mater. 2020, 32, 2001976.
- 23 Su, R.; Hsain, H. A.; Wu, M.; Zhang, D.; Hu, X.; Wang, Z.; Wang, X.; Li, F.-t.; Chen, X.; Zhu, L.; Yang, Y.; Yang, Y.; Lou, X.; Pennycook, S. J. Nano-Ferroelectric for High Efficiency Overall Water Splitting under Ultrasonic Vibration. Angew. Chem. Int. Ed. 2019, 58, 15076–15081.
- 24 Zhang, A.; Liu, Z.; Xie, B.; Lu, J.; Guo, K.; Ke, S.; Shu, L.; Fan, H. Vibration catalysis of eco-friendly Na0.5K0.5NbO3-based piezoelectric: An efficient phase boundary catalyst. Appl. Catal. B 2020, 279, 119353.
- 25 Feng, W.; Yuan, J.; Zhang, L.; Hu, W.; Wu, Z.; Wang, X.; Huang, X.; Liu, P.; Zhang, S. Atomically thin ZnS nanosheets: Facile synthesis and superior piezocatalytic H2 production from pure H2O. Appl. Catal. B 2020, 277, 119250.
- 26 Zhang, Y.; Thuy Phuong, P. T.; Hoang Duy, N. P.; Roake, E.; Khanbareh, H.; Hopkins, M.; Zhou, X.; Zhang, D.; Zhou, K.; Bowen, C. Polarisation tuneable piezo-catalytic activity of Nb-doped PZT with low Curie temperature for efficient CO2 reduction and H2 generation. Nanoscale Adv. 2021, 3, 1362–1374.
- 27 Mohapatra, H.; Kleiman, M.; Esser-Kahn, A. P. J. N. C. Mechanically controlled radical polymerization initiated by ultrasound. Nat. Chem. 2017, 9, 135–139.
- 28
Wang, Z.; Ayarza, J.; Esser-Kahn, A. P. J. A. C. Mechanically Initiated Bulk-Scale Free-Radical Polymerization. Angew. Chem. Int. Ed. 2019, 131, 12151–12154.
10.1002/ange.201903956 Google Scholar
- 29 Ayarza, J.; Wang, Z.; Wang, J.; Esser-Kahn, A. P. Mechanically Promoted Synthesis of Polymer Organogels via Disulfide Bond Cross-Linking. ACS Macro Lett. 2021, 10, 799–804.
- 30 Wang, Z.; Pan, X.; Li, L.; Fantin, M.; Yan, J.; Wang, Z.; Wang, Z.; Xia, H.; Matyjaszewski, K. Enhancing Mechanically Induced ATRP by Promoting Interfacial Electron Transfer from Piezoelectric Nanoparticles to Cu Catalysts. Macromolecules 2017, 50, 7940–7948.
- 31 Kubota, K.; Pang, Y.; Miura, A.; Ito, H. Redox reactions of small organic molecules using ball milling and piezoelectric materials. Science 2019, 366, 1500–1504.
- 32 Wang, Z.; Wang, J.; Ayarza, J.; Steeves, T.; Hu, Z.; Manna, S.; Esser-Kahn, A. P. Bio-inspired mechanically adaptive materials through vibration-induced crosslinking. Nat. Mater. 2021, 20, 869–874.
- 33 Wang, G.-W. Mechanochemical organic synthesis. Chem. Soc. Rev. 2013, 42, 7668–7700.
- 34 Wang, G.-W. Fullerene Mechanochemistry: Serendipitous Discovery of Dumb-Bell-Shaped C120 and Beyond. Chin. J. Chem. 2021, 39, 1797–1803.
- 35 Fiss, B. G.; Richard, A. J.; Douglas, G.; Kojic, M.; Friščić, T.; Moores, A. Mechanochemical methods for the transfer of electrons and exchange of ions: inorganic reactivity from nanoparticles to organometallics. Chem. Soc. Rev. 2021, 50, 8279–8318.
- 36 Mateti, S.; Mathesh, M.; Liu, Z.; Tao, T.; Ramireddy, T.; Glushenkov, A. M.; Yang, W.; Chen, Y. I. Mechanochemistry: A force in disguise and conditional effects towards chemical reactions. Chem. Commun. 2021, 57, 1080–1092.
- 37 Pang, Y.; Lee, J. W.; Kubota, K.; Ito, H. Solid-State Radical C−H Trifluoromethylation Reactions Using Ball Milling and Piezoelectric Materials. Angew. Chem. Int. Ed. 2020, 59, 22570–22576.
- 38 Schumacher, C.; Hernández, J. G.; Bolm, C. Electro-Mechanochemical Atom Transfer Radical Cyclizations using Piezoelectric BaTiO3. Angew. Chem. Int. Ed. 2020, 59, 16357–16360.
- 39 Martínez, R. F.; Cravotto, G.; Cintas, P. Organic Sonochemistry: A Chemist's Timely Perspective on Mechanisms and Reactivity. J. Org. Chem. 2021, 86, 13833–13856.
- 40 Brotchie, A.; Grieser, F.; Ashokkumar, M. Effect of Power and Frequency on Bubble-Size Distributions in Acoustic Cavitation. Phys. Rev. Lett. 2009, 102, 084302.
- 41 Mckenzie, T. G.; Karimi, F.; Ashokkumar, M.; Qiao, G. G. J. C. Ultrasound and Sonochemistry for Radical Polymerization: Sound Synthesis. Chem. - Eur. J. 2019, 25, 5372–5388.
- 42 McKenzie, T. G.; Colombo, E.; Fu, Q.; Ashokkumar, M.; Qiao, G. G. Sono-RAFT Polymerization in Aqueous Medium. Angew. Chem. Int. Ed. 2017, 56, 12302–12306.
- 43 Bößl, F.; Tudela, I. Piezocatalysis: Can catalysts really dance? Curr. Opin. Green Sustain. 2021, 32, 100537.
- 44 Bößl, F.; Comyn, T. P.; Cowin, P. I.; García-García, F. R.; Tudela, I. Piezocatalytic degradation of pollutants in water: Importance of catalyst size, poling and excitation mode. Chem. Eng. J. Adv. 2021, 7, 100133.
- 45 Liao, X.; Xie, H.; Liao, B.; Hou, S.; Yu, Y.; Fan, X. Ball milling induced strong polarization electric fields in Cu3B2O6 crystals for high efficiency piezocatalysis. Nano Energy 2022, 94, 106890.
- 46 Wang, M.; Zuo, Y.; Wang, J.; Wang, Y.; Shen, X.; Qiu, B.; Cai, L.; Zhou, F.; Lau, S. P.; Chai, Y. Remarkably Enhanced Hydrogen Generation of Organolead Halide Perovskites via Piezocatalysis and Photocatalysis. Adv. Energy Mater. 2019, 9, 1901801.
- 47 Zhou, Y.-N.; Li, J.-J.; Ljubic, D.; Luo, Z.-H.; Zhu, S. Mechanically Mediated Atom Transfer Radical Polymerization: Exploring Its Potential at High Conversions. Macromolecules 2018, 51, 6911–6921.
- 48 Ayarza, J.; Wang, Z.; Wang, J.; Huang, C.-W.; Esser-Kahn, A. P. 100th Anniversary of Macromolecular Science Viewpoint: Piezoelectrically Mediated Mechanochemical Reactions for Adaptive Materials. ACS Macro Lett. 2020, 9, 1237–1248.
- 49 Ryan, M. D.; Theriot, J. C.; Lim, C.-H.; Yang, H.; G. Lockwood, A.; Garrison, N. G.; Lincoln, S. R.; Musgrave, C. B.; Miyake, G. M. Solvent effects on the intramolecular charge transfer character of N,N-diaryl dihydrophenazine catalysts for organocatalyzed atom transfer radical polymerization. J. Polym. Sci.; Part A: Polym. Chem. 2017, 55, 3017–3027.
- 50 Reichardt, C. Solvatochromic Dyes as Solvent Polarity Indicators. Chem. Rev. 1994, 94, 2319–2358.
- 51 Li, Y.; Meng, L.; Zeng, Y. Comparison of Anion-Anion Halogen Bonds with Neutral-Anion Halogen Bonds in the Gas Phase and Polar Solvents. ChemPlusChem 2021, 86, 232–240.
- 52 Liu, F.; Chen, L.-N.; Chen, A.-M.; Ye, Z.-P.; Wang, Z.-W.; Liu, Z.-L.; He, X.-C.; Li, S.-H.; Xia, P.-J. Mechanochemical Synthesis of 2-Arylquinoxalines and 3-Arylquinoxalin-2(1H)-ones via Aryldiazonium Salts. Adv. Synth. Catal. 2022, 364, 1080–1084.
- 53 Cvek, M.; Kollar, J.; Mrlik, M.; Masar, M.; Suly, P.; Urbanek, M.; Mosnacek, J. Surface-initiated mechano-ATRP as a convenient tool for tuning of bidisperse magnetorheological suspensions toward extreme kinetic stability. Polym. Chem. 2021, 12, 5093–5105.
- 54 Ding, C.; Yan, Y.; Peng, Y.; Wu, D.; Shen, H.; Zhang, J.; Wang, Z.; Zhang, Z. Piezoelectrically Mediated Reversible Addition–Fragmentation Chain-Transfer Polymerization. Macromolecules 2022, 55, 4056–4063.
- 55 Liu, K.; Zhang, W.; Zong, L.; He, Y.; Zhang, X.; Liu, M.; Shi, G.; Qiao, X.; Pang, X. Dimensional Optimization for ZnO-Based Mechano-ATRP with Extraordinary Activity. J. Phys. Chem. Lett. 2022, 13, 4884–4890.
- 56 Wang, B.; Zhang, Q.; He, J.; Huang, F.; Li, C.; Wang, M. Co-catalyst-free large ZnO single crystal for high-efficiency piezocatalytic hydrogen evolution from pure water. J. Energy Chem. 2022, 65, 304–311.
- 57 Wu, J. M.; Sun, Y.-G.; Chang, W.-E.; Lee, J.-T. Piezoelectricity induced water splitting and formation of hydroxyl radical from active edge sites of MoS2 nanoflowers. Nano Energy 2018, 46, 372–382.
- 58 Yoon, J.; Kim, J.; Tieves, F.; Zhang, W.; Alcalde, M.; Hollmann, F.; Park, C. B. Piezobiocatalysis: Ultrasound-Driven Enzymatic Oxyfunctionalization of C–H Bonds. ACS Catal. 2020, 10, 5236–5242.
- 59 Li, S.; Zhao, Z.; Yu, D.; Zhao, J.-Z.; Su, Y.; Liu, Y.; Lin, Y.; Liu, W.; Xu, H.; Zhang, Z. Few-layer transition metal dichalcogenides (MoS2, WS2, and WSe2) for water splitting and degradation of organic pollutants: Understanding the piezocatalytic effect. Nano Energy 2019, 66, 104083.
- 60 Xu, S.; Zhang, W.; Wang, C.; Peng, W.; Shi, G.; Cui, Z.; Fu, P.; Liu, M.; He, Y.; Qiao, X.; Pang, X. Mechanically induced atom transfer radical polymerization with high efficiency via piezoelectric heterostructures. Polymer 2022, 252, 124949.
- 61 Zhao, L.; Zhang, Y.; Wang, F.; Hu, S.; Wang, X.; Ma, B.; Liu, H.; Wang, Z. L.; Sang, Y. BaTiO3 nanocrystal-mediated micro pseudo-electrochemical cells with ultrasound-driven piezotronic enhancement for polymerization. Nano Energy 2017, 39, 461–469.
- 62 Wang, Z.; Pan, X.; Yan, J.; Dadashi-Silab, S.; Xie, G.; Zhang, J.; Wang, Z.; Xia, H.; Matyjaszewski, K. Temporal Control in Mechanically Controlled Atom Transfer Radical Polymerization Using Low ppm of Cu Catalyst. ACS Macro Lett. 2017, 6, 546–549.
- 63 Hemakesh, M.; Jorge, A.; Emily, S.; Scheuermann, A. M.; Philip, G.; Esser-Kahn, A. P. J. A. C. Ultrasound Promoted Step-Growth Polymerization and Polymer Crosslinking Via Copper Catalyzed Azide–Alkyne "Click" Reaction. Angew. Chem. Int. Ed. 2018, 54, 11208–11212.
- 64 Wang, Y.; Wen, X.; Jia, Y.; Huang, M.; Wang, F.; Zhang, X.; Bai, Y.; Yuan, G.; Wang, Y. Piezo-catalysis for nondestructive tooth whitening. Nat. Commun. 2020, 11, 1328.
- 65 Yu, C.; Tan, M.; Li, Y.; Liu, C.; Yin, R.; Meng, H.; Su, Y.; Qiao, L.; Bai, Y. Ultrahigh piezocatalytic capability in eco-friendly BaTiO3 nanosheets promoted by 2D morphology engineering. J. Colloid Interface Sci. 2021, 596, 288–296.
- 66 Zeitler, S. M.; Chakma, P.; Golder, M. R. Diaryliodonium salts facilitate metal-free mechanoredox free radical polymerizations. Chem. Sci. 2022, 13, 4131–4138.
- 67 Huang, M.; Deng, L.; Lao, T.; Zhang, Z.; Su, Z.; Yu, Y.; Cao, H. Mechanochemically Induced Dehydrogenation Coupling and [3+2] Cycloaddition of Indolizines with Allenes Using Piezoelectric Materials. J. Org. Chem. 2022, 87, 3265–3275.
- 68 Jiang, J.; Song, S.; Guo, J.; Zhou, J.; Li, J. Mechanically induced transition metal free C(sp2)-H arylation of quinoxalin(on)es with diaryliodonium salts and piezoelectric BaTiO3. Tetrahedron Lett. 2022, 153820.
- 69 Wang, Y.; Zhang, Z.; Deng, L.; Lao, T.; Su, Z.; Yu, Y.; Cao, H. Mechanochemical Synthesis of 1,2-Diketoindolizine Derivatives from Indolizines and Epoxides Using Piezoelectric Materials. Org. Lett. 2021, 23, 7171–7176.
- 70 Pan, M.; Zhang, C.; Wang, J.; Chew, J. W.; Gao, G.; Pan, B. Multifunctional Piezoelectric Heterostructure of BaTiO3@Graphene: Decomplexation of Cu-EDTA and Recovery of Cu. Environ. Sci. Technol. 2019, 53, 8342–8351.
- 71 Liu, X.; Shen, L.; Xu, W.; Kang, W.; Yang, D.; Li, J.; Ge, S.; Liu, H. Low frequency hydromechanics-driven generation of superoxide radicals via optimized piezotronic effect for water disinfection. Nano Energy 2021, 88, 106290.
- 72 Lin, E.; Kang, Z.; Wu, J.; Huang, R.; Qin, N.; Bao, D. BaTiO3 nanocubes/cuboids with selectively deposited Ag nanoparticles: Efficient piezocatalytic degradation and mechanism. Appl. Catal. B 2021, 285, 119823.
- 73 Su, R.; Wang, Z.; Zhu, L.; Pan, Y.; Zhang, D.; Wen, H.; Luo, Z.-D.; Li, L.; Li, F.-t.; Wu, M.; He, L.; Sharma, P.; Seidel, J. Strain-Engineered Nano-Ferroelectrics for High-Efficiency Piezocatalytic Overall Water Splitting. Angew. Chem. Int. Ed. 2021, 60, 16019–16026.
- 74 Yu, D.; Liu, Z.; Zhang, J.; Li, S.; Zhao, Z.; Zhu, L.; Liu, W.; Lin, Y.; Liu, H.; Zhang, Z. Enhanced catalytic performance by multi-field coupling in KNbO3 nanostructures: Piezo-photocatalytic and ferro-photoelectrochemical effects. Nano Energy 2019, 58, 695–705.
- 75 Liu, D.; Song, Y.; Xin, Z.; Liu, G.; Jin, C.; Shan, F. High-piezocatalytic performance of eco-friendly (Bi1/2Na1/2)TiO3-based nanofibers by electrospinning. Nano Energy 2019, 65, 104024.
- 76 Amiri, O.; Salar, K.; Othman, P.; Rasul, T.; Faiq, D.; Saadat, M. Purification of wastewater by the piezo-catalyst effect of PbTiO3 nanostructures under ultrasonic vibration. J. Hazard. Mater. 2020, 394, 122514.
- 77 Zhou, Q.; Li, N.; Chen, D.; Xu, Q.; Li, H.; He, J.; Lu, J. Efficient removal of Bisphenol A in water via piezocatalytic degradation by equivalent-vanadium-doped SrTiO3 nanofibers. Chem. Eng. Sci. 2022, 247, 116707.
- 78 Yang, G.; Chen, Q.; Wang, W.; Wu, S.; Gao, B.; Xu, Y.; Chen, Z.; Zhong, S.; Chen, J.; Bai, S. Cocatalyst Engineering in Piezocatalysis: A Promising Strategy for Boosting Hydrogen Evolution. ACS Appl. Mater. Interfaces 2021, 13, 15305–15314.
- 79 Huang, X.; Lei, R.; Yuan, J.; Gao, F.; Jiang, C.; Feng, W.; Zhuang, J.; Liu, P. Insight into the piezo-photo coupling effect of PbTiO3/CdS composites for piezo-photocatalytic hydrogen production. Appl. Catal. B 2021, 282, 119586.
- 80 Song, L.; Zhang, T.; Zhang, S.; Wei, J.; Chen, E. Study on Performance and Mechanism of the Ball-Milling-Driven Piezoelectrochemical Effect on Catalytic Oxidation of Toluene in the Air Condition. ACS Sustainable Chem. Eng. 2022, 10, 5129–5137.
- 81 He, J.; Yu, C.; Hou, Y.; Su, X.; Li, J.; Liu, C.; Xue, D.; Cao, J.; Su, Y.; Qiao, L.; Lookman, T.; Bai, Y. Accelerated discovery of high-performance piezocatalyst in BaTiO3-based ceramics via machine learning. Nano Energy 2022, 97, 107218.
- 82 Ma, W.; Yao, B.; Zhang, W.; He, Y.; Yu, Y.; Niu, J. Fabrication of PVDF-based piezocatalytic active membrane with enhanced oxytetracycline degradation efficiency through embedding few-layer E-MoS2 nanosheets. Chem. Eng. J. 2021, 415, 129000.
- 83 Wang, Y.; Xu, Y.; Dong, S.; Wang, P.; Chen, W.; Lu, Z.; Ye, D.; Pan, B.; Wu, D.; Vecitis, C. D.; Gao, G. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 2021, 12, 3508.
- 84 Wang, Y.; Zhang, J.; Pu, L.; Cao, M.; Dong, S.; Vecitis, C. D.; Gao, G. Unexpected exfoliation and activity of nano poly(tetrafluoroethylene) particles from magnetic stir bars: Discovery and implication. Chemosphere 2022, 291, 132797.
- 85 Tong, W.; Zhang, Y.; Huang, H.; Xiao, K.; Yu, S.; Zhou, Y.; Liu, L.; Li, H.; Liu, L.; Huang, T.; Li, M.; Zhang, Q.; Du, R.; An, Q. A highly sensitive hybridized soft piezophotocatalyst driven by gentle mechanical disturbances in water. Nano Energy 2018, 53, 513–523.
- 86 Zhou, X.; Yan, F.; Wu, S.; Shen, B.; Zeng, H.; Zhai, J. Remarkable Piezophoto Coupling Catalysis Behavior of BiOX/BaTiO3 (X = Cl, Br, Cl0.166Br0.834) Piezoelectric Composites. Small 2020, 16, 2001573.
- 87 Wang, H.; Sun, D.; Lu, Q.; Wang, F.; Zhao, L.; Zhang, Z.; Wang, X.; Liu, H. Bio-inspired synthesis of mesoporous HfO2 nanoframes as reactors for piezotronic polymerization and Suzuki coupling reactions. Nanoscale 2019, 11, 5240–5246.
- 88 Feng, W.; Yuan, J.; Gao, F.; Weng, B.; Hu, W.; Lei, Y.; Huang, X.; Yang, L.; Shen, J.; Xu, D.; Zhang, X.; Liu, P.; Zhang, S. Piezopotential-driven simulated electrocatalytic nanosystem of ultrasmall MoC quantum dots encapsulated in ultrathin N-doped graphene vesicles for superhigh H2 production from pure water. Nano Energy 2020, 75, 104990.
- 89 Ruan, L.; Jia, Y.; Guan, J.; Xue, B.; Huang, S.; Wu, Z.; Li, G.; Cui, X. Highly piezocatalysis of metal-organic frameworks material ZIF-8 under vibration. Sep. Purif. Technol. 2022, 283, 120159.
- 90 Starr, M. B.; Shi, J.; Wang, X. J. A. C. I. E. Piezopotential-driven redox reactions at the surface of piezoelectric materials. Angew. Chem. Int. Ed. 2012, 51, 5962–5966.
- 91 Lin, H.; Wu, Z.; Jia, Y.; Li, W.; Zheng, R.-K.; Luo, H. Piezoelectrically induced mechano-catalytic effect for degradation of dye wastewater through vibrating Pb(Zr0. 52Ti0. 48)O3 fibers. Appl. Phys. Lett. 2014, 104, 162907.
- 92 Hong, K.-S.; Xu, H.; Konishi, H.; Li, X. Piezoelectrochemical Effect: A New Mechanism for Azo Dye Decolorization in Aqueous Solution through Vibrating Piezoelectric Microfibers. J. Phys. Chem. C 2012, 116, 13045–13051.
- 93 Wang, P.; Tang, Q.; Zhang, L.; Xu, M.; Sun, L.; Sun, S.; Zhang, J.; Wang, S.; Liang, X. Ultrasmall Barium Titanate Nanoparticles for Highly Efficient Hypoxic Tumor Therapy via Ultrasound Triggered Piezocatalysis and Water Splitting. ACS Nano 2021, 15, 11326–11340.
- 94 Wang, X.; Zhou, J.; Song, J.; Liu, J.; Xu, N.; Wang, Z. L. Piezoelectric Field Effect Transistor and Nanoforce Sensor Based on a Single ZnO Nanowire. Nano Lett. 2006, 6, 2768–2772.
- 95 Wang, Z. L. Piezotronic and Piezophototronic Effects. J. Phys. Chem. Lett. 2010, 1, 1388–1393.
- 96 Ramadan, K. S.; Sameoto, D.; Evoy, S. A review of piezoelectric polymers as functional materials for electromechanical transducers. Smart Mater. Struct. 2014, 23, 033001.
- 97 Briscoe, J.; Dunn, S. Piezoelectric nanogenerators – a review of nanostructured piezoelectric energy harvesters. Nano Energy 2015, 14, 15–29.
- 98 Nunes-Pereira, J.; Costa, P.; Lanceros-Mendez, S. Piezoelectric Energy Production. In Comprehensive Energy Systems, Elsevier, Oxford, 2018, pp. 380–415.
- 99 Zheng, Y.; Cheng, M.; Wu, X.; Zhang, S.; Liu, Z.; Li, Y.; Shao, W.; Lin, Q.; Tan, J.; Gao, S.; Zhang, Y.; Ye, W. Sm-Doped (1 – x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Nanostructures for Piezocatalytic Dye Degradation. ACS Appl. Nano Mater. 2022, 5, 277–287.
- 100Sukesha; Vig, R.; Kumar, N. Effect of Electric Field and Temperature on Dielectric Constant and Piezoelectric Coefficient of Piezoelectric Materials: A Review. Integr. Ferroelectr. 2015, 167, 154–175.
- 101 Zhang, Y.; Khanbareh, H.; Dunn, S.; Bowen, C. R.; Gong, H.; Duy, N. P. H.; Phuong, P. T. T. High Efficiency Water Splitting using Ultrasound Coupled to a BaTiO3 Nanofluid. Adv. Sci. 2022, 9, 2105248.
- 102 Li, Q.; Li, X.; Yu, J.; Chapter 10 - Surface and interface modification strategies of CdS-based photocatalysts. In Interface Science and Technology, Vol. 31, Elsevier, 2020, pp. 313–348.
- 103 Xu, X.; Xiao, L.; Jia, Y.; Wu, Z.; Wang, F.; Wang, Y.; Haugen, N. O.; Huang, H. Pyro-catalytic hydrogen evolution by Ba0.7Sr0.3TiO3 nanoparticles: harvesting cold–hot alternation energy near room-temperature. Energy Environ. Sci. 2018, 11, 2198–2207.
- 104 Guo, L.; Zhong, C.; Cao, J.; Hao, Y.; Lei, M.; Bi, K.; Sun, Q.; Wang, Z. L. Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 2019, 62, 513–520.
- 105 Zhao, Y.; Gu, Y.; Liu, B.; Yan, Y.; Shan, C.; Guo, J.; Zhang, S.; Vecitis, C. D.; Gao, G. J. N. Pulsed hydraulic-pressure-responsive self-cleaning membrane. Nature 2022, 608, 69–73.
- 106 Shi, J.; Zeng, W.; Dai, Z.; Wang, L.; Wang, Q.; Lin, S.; Xiong, Y.; Yang, S.; Shang, S.; Chen, W.; Zhao, L.; Ding, X.; Tao, X.; Chai, Y. Piezocatalytic Foam for Highly Efficient Degradation of Aqueous Organics. Small Sci. 2021, 1, 2000011.
- 107 Xing, X.; Zhao, S.; Xu, T.; Huang, L.; Zhang, Y.; Lan, M.; Lin, C.; Zheng, X.; Wang, P. Advances and perspectives in organic sonosensitizers for sonodynamic therapy. Coord. Chem. Rev. 2021, 445, 214087.
- 108 Wu, M.; Zhang, Z.; Liu, Z.; Zhang, J.; Zhang, Y.; Ding, Y.; Huang, T.; Xiang, D.; Wang, Z.; Dai, Y.; Wan, X.; Wang, S.; Qian, H.; Sun, Q.; Li, L. Piezoelectric nanocomposites for sonodynamic bacterial elimination and wound healing. Nano Today 2021, 37, 101104.
- 109 Zhou, Y.-N.; Li, J.-J.; Wu, Y.-Y.; Luo, Z.-H. Role of External Field in Polymerization: Mechanism and Kinetics. Chem. Rev. 2020, 120, 2950–3048.
- 110 Wang, C.; Fan, W.; Li, Z.; Xiong, J.; Zhang, W.; Wang, Z. Sonochemistry-assisted photocontrolled atom transfer radical polymerization enabled by manganese carbonyl. Polym. Chem. 2022, 13, 4908–4914.
- 111 Li, J.; Nagamani, C.; Moore, J. S. Polymer Mechanochemistry: From Destructive to Productive. Acc. Chem. Res. 2015, 48, 2181–2190.
- 112 Leitch, J. A.; Browne, D. L. Mechanoredox Chemistry as an Emerging Strategy in Synthesis. Chem. - Eur. J. 2021, 27, 9721–9726.
- 113 Lv, H.; Xu, X.; Li, J.; Huang, X.; Fang, G.; Zheng, L. Mechanochemical Divergent Syntheses of Oxindoles and α-Arylacylamides via Controllable Construction of C−C and C−N Bonds by Copper and Piezoelectric Materials. Angew. Chem. Int. Ed. 2022, 61, e202206420.
- 114 Andrieux, C. P.; Pinson, J. The Standard Redox Potential of the Phenyl Radical/Anion Couple. J. Am. Chem. Soc. 2003, 125, 14801–14806.
- 115 Liang, Z.; Yan, C.-F.; Rtimi, S.; Bandara, J. Piezoelectric materials for catalytic/photocatalytic removal of pollutants: Recent advances and outlook. Appl. Catal. B 2019, 241, 256–269.
- 116 Wang, K.; Han, C.; Li, J.; Qiu, J.; Sunarso, J.; Liu, S. The Mechanism of Piezocatalysis: Energy Band Theory or Screening Charge Effect? Angew. Chem. Int. Ed. 2022, 61, e202110429.