In-depth Understanding of the Effects of Intramolecular Charge Transfer on Carbon Nitride Based Photocatalysts†
Zongzhao Sun
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYueyang Tan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorJianyong Wan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Limin Huang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Shenzhen Key Laboratory of Solid State Batteries, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
*E-mail: [email protected]Search for more papers by this authorZongzhao Sun
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorYueyang Tan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Harbin Institute of Technology, Harbin, Heilongjiang, 150001 China
Search for more papers by this authorJianyong Wan
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Search for more papers by this authorCorresponding Author
Limin Huang
Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
Shenzhen Key Laboratory of Solid State Batteries, Southern University of Science and Technology, Shenzhen, Guangdong, 518055 China
*E-mail: [email protected]Search for more papers by this authorDedicated to Southern University of Science and Technology on the occasion of the 10th anniversary
Abstract
Intramolecular charge transfer (ICT) derived from a donor-acceptor system has been applied for years to enhance the charge mobility in the field of organic photovoltaics and chemical sensing. Similar strategies have gradually been developed in polymeric graphitic carbon nitride (GCN) photocatalytic systems for promoting the light absorption and charge separation. However, there are no reviews focusing on the effects of ICT after the modification of GCN so far. Herein, we summarize some typical literature on GCN engineering to expound profoundly the roles of ICT in electronic properties regulation in terms of in-situ formation and molecular coupling. At last, some important perspectives are also proposed. This review will deepen understanding of the traditional theory for a new recognition among such many methods to improve the performance of GCN.
References
- 1 Kato, Y.; Nagao, R.; Noguchi, T. Redox potential of the terminal quinone electron acceptor QB in photosystem II reveals the mechanism of electron transfer regulation. Proc. Nat. Acad. Sci. U. S. A. 2016, 113, 620–625.
- 2 Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 2009, 38, 185––196.
- 3 Rappaport, F.; Diner, B. A. Primary photochemistry and energetics leading to the oxidation of the (Mn)4Ca cluster and to the evolution of molecular oxygen in Photosystem II. Coord. Chem. Rev. 2008, 252, 259–272.
- 4 Cardona, T.; Sedoud, A.; Cox, N.; Rutherford, A. W. Charge separation in photosystem II: a comparative and evolutionary overview. Biochim. Biophys. Acta 2012, 1817, 26–43.
- 5 Müh, F.; Glöckner, C.; Hellmich, J.; Zouni, A. Light-induced quinone reduction in photosystem II. Biochim. Biophys. Acta 2012, 1817, 44–65.
- 6 Wu, Y.; Zhu, W.-H.; Zakeeruddin, S. M.; Grätzel, M. Insight into D–A− π–A structured sensitizers: a promising route to highly efficient and stable dye-sensitized solar cells. ACS Appl. Mater. Inter. 2015, 7, 9307–9318.
- 7 Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.
- 8 Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z. Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renew. Sust. Energ. Rev. 2017, 68, 234–246.
- 9 Ameen, S.; Akhtar, M. S.; Nazim, M.; Nazeeruddin, M. K.; Shin, H.-S. Stable perovskite solar cells using thiazolo [5, 4-d] thiazole-core containing hole transporting material. Nano Energy 2018, 49, 372–379.
- 10
Poon, C. T.; Wu, D.; Yam, V. W. W. Boron (III)-Containing Donor–Acceptor Compound with Goldlike Reflective Behavior for Organic Resistive Memory Devices. Angew. Chem. 2016, 128, 3711–3715.
10.1002/ange.201510946 Google Scholar
- 11 Castet, F.; Aurel, P.; Fritsch, A.; Ducasse, L.; Liotard, D.; Linares, M.; Cornil, J.; Beljonne, D. Electronic polarization effects on charge carriers in anthracene: A valence bond study. Phys. Rev. B 2008, 77, 115210.
- 12 Song, J.; Xu, J. Density functional theory study on D-π-A-type organic dyes containing different electron-donors for dye-sensitized solar cells. Bull. Korean Chem. Soc. 2013, 34, 3211–3217.
- 13 Majdoub, M.; Anfar, Z.; Amedlous, A. Emerging Chemical Functionalization of g-C3N4: Covalent/Noncovalent Modifications and Applications. ACS Nano 2020, 14, 12390–12469.
- 14 Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 2009, 8, 76–80.
- 15 Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer to Achieving Sustainability? Chem. Rev. 2016, 116, 7159–329.
- 16 Zhao, Z.; Sun, Y.; Dong, F. Graphitic carbon nitride based nanocomposites: a review. Nanoscale 2015, 7, 15–37.
- 17 Zhang, J.; Zhang, M.; Sun, R. Q.; Wang, X. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem. Int. Ed. 2012, 51, 10145–10149.
- 18 Han, Y. Y.; Lu, X. L.; Tang, S. F.; Yin, X. P.; Wei, Z. W.; Lu, T. B. Metal-Free 2D/2D Heterojunction of Graphitic Carbon Nitride/Graphdiyne for Improving the Hole Mobility of Graphitic Carbon Nitride. Adv. Energ. Mater. 2018, 8, 1702992.
- 19 Yang, Z.; Zhang, Y.; Schnepp, Z. Soft and hard templating of graphitic carbon nitride. J. Mater. Chem. A 2015, 3, 14081–14092.
- 20 Lau, V. W.; Moudrakovski, I.; Botari, T.; Weinberger, S.; Mesch, M. B.; Duppel, V.; Senker, J.; Blum, V.; Lotsch, B. V. Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites. Nat. Commun. 2016, 7, 12165.
- 21 Jiang, L.; Yuan, X.; Pan, Y.; Liang, J.; Zeng, G.; Wu, Z.; Wang, H. Doping of graphitic carbon nitride for photocatalysis: a reveiw. Appl. Catal. B: Environ. 2017, 217, 388–406.
- 22 Jiang, Y.; Sun, Z.; Tang, C.; Zhou, Y.; Zeng, L.; Huang, L. Enhancement of photocatalytic hydrogen evolution activity of porous oxygen doped g-C3N4 with nitrogen defects induced by changing electron transition. Appl. Catal. B: Environ. 2019, 240, 30–38.
- 23 Sun, Z.; Wang, W.; Chen, Q.; Pu, Y.; He, H.; Zhuang, W.; He, J.; Huang, L. A hierarchical carbon nitride tube with oxygen doping and carbon defects promotes solar-to-hydrogen conversion. J. Mater. Chem. A 2020, 8, 3160–3167.
- 24 Thomas, A.; Fischer, A.; Goettmann, F.; Antonietti, M.; Müller, J.-O.; Schlögl, R.; Carlsson, J. M. Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. J. Mater. Chem. 2008, 18, 4893–4908.
- 25 Wang, Y.; Phua, S. Z. F.; Dong, G.; Liu, X.; He, B.; Zhai, Q.; Li, Y.; Zheng, C.; Quan, H.; Li, Z.; Zhao, Y. Structure Tuning of Polymeric Carbon Nitride for Solar Energy Conversion: From Nano to Molecular Scale. Chem 2019, 5, 2775–2813.
- 26 Zhu, J.; Xiao, P.; Li, H.; Carabineiro, S. A. Graphitic carbon nitride: synthesis, properties, and applications in catalysis. ACS Appl. Mater. Inter. 2014, 6, 16449–16465.
- 27 Zheng, Y.; Lin, L.; Wang, B.; Wang, X. Graphitic carbon nitride polymers toward sustainable photoredox catalysis. Angew. Chem. Int. Ed. 2015, 54, 12868–12884.
- 28 Wen, J.; Xie, J.; Chen, X.; Li, X. A review on g-C3N4-based photocatalysts. Appl. Surf. Sci. 2017, 391, 72–123.
- 29 Fu, J.; Yu, J.; Jiang, C.; Cheng, B. g-C3N4-Based heterostructured photocatalysts. Adv. Energ. Mater. 2018, 8, 1701503.
- 30 Zhou, L.; Zhang, H.; Sun, H.; Liu, S.; Tade, M. O.; Wang, S.; Jin, W. Recent advances in non-metal modification of graphitic carbon nitride for photocatalysis: a historic review. Catal. Sci. Technol. 2016, 6, 7002–7023.
- 31 Cao, Q.; Kumru, B.; Antonietti, M.; Schmidt, B. V. Graphitic carbon nitride and polymers: a mutual combination for advanced properties. Mater. Horiz. 2020, 7, 762–786.
- 32 Brédas, J.-L.; Beljonne, D.; Coropceanu, V.; Cornil, J. Charge-transfer and energy-transfer processes in π-conjugated oligomers and polymers: a molecular picture. Chem. Rev. 2004, 104, 4971–5004.
- 33 Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. Through-space charge transfer and nonlinear optical properties of substituted paracyclophane. J. Am. Chem. Soc. 2000, 122, 11956–11962.
- 34 Li, Y.; Liu, T.; Liu, H.; Tian, M.-Z.; Li, Y. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems. Acc. Chem. Res. 2014, 47, 1186–1198.
- 35 Lee, J. Y.; Kim, K. S.; Mhin, B. J. Intramolecular charge transfer of π-conjugated push–pull systems in terms of polarizability and electronegativity. J. Chem. Phys. 2001, 115, 9484–9489.
- 36 Sachs, S. B.; Dudek, S. P.; Hsung, R. P.; Sita, L. R.; Smalley, J. F.; Newton, M. D.; Feldberg, S. W.; Chidsey, C. E. Rates of interfacial electron transfer through π-conjugated spacers. J. Am. Chem. Soc. 1997, 119, 10563–10564.
- 37 Liu, G.; Zhao, G.; Zhou, W.; Liu, Y.; Pang, H.; Zhang, H.; Hao, D.; Meng, X.; Li, P.; Kako, T. In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production. Adv. Funct. Mater. 2016, 26, 6822–6829.
- 38 Wang, Y.; Du, P.; Pan, H.; Fu, L.; Zhang, Y.; Chen, J.; Du, Y.; Tang, N.; Liu, G. Increasing Solar Absorption of Atomically Thin 2D Carbon Nitride Sheets for Enhanced Visible-Light Photocatalysis. Adv. Mater. 2019, 31, 1807540.
- 39 Ou, H.; Chen, X.; Lin, L.; Fang, Y.; Wang, X. Biomimetic Donor-Acceptor Motifs in Conjugated Polymers for Promoting Exciton Splitting and Charge Separation. Angew. Chem. Int. Ed. 2018, 57, 8729–8733.
- 40 Yu, S.; Li, J.; Zhang, Y.; Li, M.; Dong, F.; Zhang, T.; Huang, H. Local spatial charge separation and proton activation induced by surface hydroxylation promoting photocatalytic hydrogen evolution of polymeric carbon nitride. Nano Energy 2018, 50, 383–392.
- 41 Teng, Z.; Yang, N.; Lv, H.; Wang, S.; Hu, M.; Wang, C.; Wang, D.; Wang, G. Edge-Functionalized g-C3N4 Nanosheets as a Highly Efficient Metal-free Photocatalyst for Safe Drinking Water. Chem 2019, 5, 664–680.
- 42 Song, X.; Li, X.; Zhang, X.; Wu, Y.; Ma, C.; Huo, P.; Yan, Y. Fabricating C and O co-doped carbon nitride with intramolecular donor-acceptor systems for efficient photoreduction of CO2 to CO. Appl. Catal. B: Environ. 2020, 268, 118736.
- 43 Zhang, G.; Zhang, M.; Ye, X.; Qiu, X.; Lin, S.; Wang, X. Iodine modified carbon nitride semiconductors as visible light photocatalysts for hydrogen evolution. Adv. Mater. 2014, 26, 805–809.
- 44 Zambon, A.; Mouesca, J.-M.; Gheorghiu, C.; Bayle, P.-A.; Pecaut, J.; Claeys-Bruno, M.; Gambarelli, S.; Dubois, L. s-Heptazine oligomers: promising structural models for graphitic carbon nitride. Chem. Sci. 2016, 7, 945–950.
- 45 Zhao, Y.; Zhang, J.; Qu, L. Graphitic carbon nitride/graphene hybrids as new active materials for energy conversion and storage. ChemNanoMat 2015, 1, 298–318.
- 46 Li, Y.; Gong, F.; Zhou, Q.; Feng, X.; Fan, J.; Xiang, Q. Crystalline isotype heptazine-/triazine-based carbon nitride heterojunctions for an improved hydrogen evolution. Appl. Catal. B: Environ. 2020, 268, 118381.
- 47 Li, Y.; Zhang, D.; Fan, J.; Xiang, Q. Highly crystalline carbon nitride hollow spheres with enhanced photocatalytic performance. Chin. J. Catal. 2021, 42, 627–636.
- 48
Zhang, G.; Lin, L.; Li, G.; Zhang, Y.; Savateev, A.; Zafeiratos, S.; Wang, X.; Antonietti, M. Ionothermal Synthesis of Triazine–Heptazine-Based Copolymers with Apparent Quantum Yields of 60% at 420 nm for Solar Hydrogen Production from “Sea Water”. Angew. Chem. 2018, 130, 9516–9520.
10.1002/ange.201804702 Google Scholar
- 49 Fan, X.; Zhang, L.; Cheng, R.; Wang, M.; Li, M.; Zhou, Y.; Shi, J. Construction of Graphitic C3N4-Based Intramolecular Donor–Acceptor Conjugated Copolymers for Photocatalytic Hydrogen Evolution. ACS Catal. 2015, 5, 5008–5015.
- 50 Fan, X.; Zhang, L.; Wang, M.; Huang, W.; Zhou, Y.; Li, M.; Cheng, R.; Shi, J. Constructing carbon-nitride-based copolymers via Schiff base chemistry for visible-light photocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2016, 182, 68–73.
- 51 Sun, Z.; Jiang, Y.; Zeng, L.; Huang, L. Intramolecular Charge Transfer and Extended Conjugate Effects in Donor–π–Acceptor-Type Mesoporous Carbon Nitride for Photocatalytic Hydrogen Evolution. ChemSusChem 2019, 12, 1325–1333.
- 52 Zhang, J.; Chen, X.; Takanabe, K.; Maeda, K.; Domen, K.; Epping, J. D.; Fu, X.; Antonietti, M.; Wang, X. Synthesis of a carbon nitride structure for visible-light catalysis by copolymerization. Angew. Chem. 2010, 49, 441–444.
- 53 Zhang, J.; Zhang, G.; Chen, X.; Lin, S.; Möhlmann, L.; Dołęga, G.; Lipner, G.; Antonietti, M.; Blechert, S.; Wang, X. Co-Monomer Control of Carbon Nitride Semiconductors to Optimize Hydrogen Evolution with Visible Light. Angew. Chem. 2012, 51, 3237–3241.
- 54 Zhang, M.; Wang, X. Two dimensional conjugated polymers with enhanced optical absorption and charge separation for photocatalytic hydrogen evolution. Energy Environ. Sci. 2014, 7, 1902–1906.
- 55 Zhang, G.; Li, G.; Lan, Z. A.; Lin, L.; Savateev, A.; Heil, T.; Zafeiratos, S.; Wang, X.; Antonietti, M. Optimizing Optical Absorption, Exciton Dissociation, and Charge Transfer of a Polymeric Carbon Nitride with Ultrahigh Solar Hydrogen Production Activity. Angew. Chem. Int. Ed. Engl. 2017, 56, 13445–13449.
- 56 Tian, J.; Zhang, L.; Fan, X.; Zhou, Y.; Wang, M.; Cheng, R.; Li, M.; Kan, X.; Jin, X.; Liu, Z.; Gao, Y.; Shi, J. A post-grafting strategy to modify g-C3N4 with aromatic heterocycles for enhanced photocatalytic activity. J. Mater. Chem. A 2016, 4, 13814–13821.
- 57 Sun, Z.; Jiang, Y.; Zeng, L.; Zhang, X.; Hu, S.; Huang, L. Controllable local electronic migration induced charge separation and red-shift emission in carbon nitride for enhanced photocatalysis and potential phototherapy. Chem. Commun. 2019, 55, 6002–6005.
- 58 Yang, Y.; Zeng, G.; Huang, D.; Zhang, C.; He, D.; Zhou, C.; Wang, W.; Xiong, W.; Li, X.; Li, B.; Dong, W.; Zhou, Y. Molecular engineering of polymeric carbon nitride for highly efficient photocatalytic oxytetracycline degradation and H2O2 production. Appl. Catal. B: Environ. 2020, 272, 118970.
- 59 Tian, S.; Chen, S.; Ren, X.; Cao, R.; Hu, H.; Bai, F. Bottom-up fabrication of graphitic carbon nitride nanosheets modified with porphyrin via covalent bonding for photocatalytic H2 evolution. Nano Res. 2019, 12, 3109–3115.
- 60 Zou, Y.; Wang, X.; Ai, Y.; Liu, Y.; Ji, Y.; Wang, H.; Hayat, T.; Alsaedi, A.; Hu, W.; Wang, X. β-Cyclodextrin modified graphitic carbon nitride for the removal of pollutants from aqueous solution: experimental and theoretical calculation study. J. Mater. Chem. A 2016, 4, 14170–14179.
- 61 Li, K.; Zhang, W. D. Creating Graphitic Carbon Nitride Based Donor-π–Acceptor-π–Donor Structured Catalysts for Highly Photocatalytic Hydrogen Evolution. Small 2018, 14, 1703599.
- 62 Che, H.; Liu, C.; Che, G.; Liao, G.; Dong, H.; Li, C.; Song, N.; Li, C. Facile construction of porous intramolecular g-C3N4-based donor-acceptor conjugated copolymers as highly efficient photocatalysts for superior H2 evolution. Nano Energy 2020, 67, 104273.
- 63 Zhang, N.; Wang, L.; Wang, H.; Cao, R.; Wang, J.; Bai, F.; Fan, H. Self-assembled one-dimensional porphyrin nanostructures with enhanced photocatalytic hydrogen generation. Nano Lett. 2018, 18, 560–566.
- 64 Wu, K.; Chen, X.; Liu, S.; Pan, Y.; Cheong, W.-C.; Zhu, W.; Cao, X.; Shen, R.; Chen, W.; Luo, J. Porphyrin-like Fe-N4 sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction. Nano Res. 2018, 11, 6260–6269.
- 65 Bonin, J.; Robert, M.; Routier, M. Selective and efficient photocatalytic CO2 reduction to CO using visible light and an iron-based homogeneous catalyst. J. Am. Chem. Soc. 2014, 136, 16768–16771.
- 66 Rao, H.; Lim, C.-H.; Bonin, J.; Miyake, G. M.; Robert, M. Visible- light-driven conversion of CO2 to CH4 with an organic sensitizer and an iron porphyrin catalyst. J. Am. Chem. Soc. 2018, 140, 17830–17834.
- 67 Zhao, G.; Pang, H.; Liu, G.; Li, P.; Liu, H.; Zhang, H.; Shi, L.; Ye, J. Co-porphyrin/carbon nitride hybrids for improved photocatalytic CO2 reduction under visible light. Appl. Catal. B: Environ. 2017, 200, 141–149.
- 68 Liu, J.; Shi, H.; Shen, Q.; Guo, C.; Zhao, G. A biomimetic photoelectrocatalyst of Co–porphyrin combined with a g-C3N4 nanosheet based on π–π supramolecular interaction for high-efficiency CO2 reduction in water medium. Green Chem. 2017, 19, 5900–5910.
- 69 Lin, L.; Hou, C.; Zhang, X.; Wang, Y.; Chen, Y.; He, T. Highly efficient visible-light driven photocatalytic reduction of CO2 over g-C3N4 nanosheets/tetra (4-carboxyphenyl) porphyrin iron (III) chloride heterogeneous catalysts. Appl. Catal. B: Environ. 2018, 221, 312–319.
- 70 Da Silva, E. S.; Moura, N. M.; Neves, M. G. P.; Coutinho, A.; Prieto, M.; Silva, C. G.; Faria, J. L. Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis (carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2018, 221, 56–69.