Sarcaglarols A—D, Lindenane−Monoterpene Heterodimers from Sarcandra glabra Based on Molecular Networks
Yongyue Wang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorZhirong Cui
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorJun Chi
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorPengfei Tang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorMeihui Zhang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorJixin Li
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorYongyi Li
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorHao Zhang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorCorresponding Author
Jun Luo
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lingyi Kong
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYongyue Wang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorZhirong Cui
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
These authors contributed equally to this work.
Search for more papers by this authorJun Chi
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorPengfei Tang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorMeihui Zhang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorJixin Li
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorYongyi Li
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorHao Zhang
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
Search for more papers by this authorCorresponding Author
Jun Luo
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Lingyi Kong
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, 210009 China
E-mail: [email protected]; [email protected]Search for more papers by this authorMain observation and conclusion
Sarcaglarols A—D (1—4), two pairs of lindenane−monoterpene heterodimers fused by a 1,2-dioxane moiety, were discovered and isolated from the leaves of Sarcandra glabra guided by MS/MS molecular networking-based strategy. Their planar structures, absolute configurations of basic skeleton and flexible polyhydric side chain were established by analysis of HRESIMS, NMR spectroscopic data, ECD spectrum, and the X-ray diffraction study of isopropylidene derivatives. An intermolecular [2+2+2] cycloaddition may play a key role in the biosynthesis pathway of the 1,2-dioxane moiety fused lindenane−monoterpene heterodimer skeleton, which can be recognized as the biogenetic precursors of our previous reported lindenane−normonoterpene conjugates. In addition, compounds 1, 3 and 4 exhibited moderate inhibitory effects of lipid accumulation in free fatty acid-exposed L02 cells.
Supporting Information
Filename | Description |
---|---|
cjoc202000456-sup-0001-Supinfo.pdfPDF document, 6.9 MB |
Appendix S1: Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Zhan, Z. J.; Ying, Y. M.; Ma, L. F.; Shan, W. G. Natural disesquiterpenoids. Nat. Prod. Rep. 2011, 28, 594–629.
- 2 Pan, L. L.; Xu, P.; Luo, X. L.; Wang, L. J.; Liu, S. Y.; Zhu, Y. Z.; Hu. J. F.; Liu, X. H. Shizukaol B, an Active Sesquiterpene from Chloranthus henryi, Attenuates LPS-induced Inflammatory Responses in BV2 Microglial Cells. Biomed. Pharmacother. 2017, 88, 878–884.
- 3 Fang, P. L.; Gao, Y. L.; Yan, H.; Pan, L. L.; Liu, S. C.; Gong, N. B.; Lu, Y.; Chen, C. X.; Zhong, H. M.; Gao, Y.; Liu, H. Y. Lindenane Disesquiterpenoids with Anti-HIV-1 Activity from Chloranthus japonicus. J. Nat. Prod. 2011, 74, 1408–1413.
- 4 Tang, L.; Zhu, H.; Yang, X.; Xie, F.; Peng, J.; Jiang, D.; Xie, J.; Qi, M.; Yu, L. Shizukaol D, a Dimeric Sesquiterpene Isolated from Chloranthus serratus, Represses the Growth of Human Liver Cancer Cells by Modulating Wnt Signalling Pathway. PLoS One 2016, 11, e0152012.
- 5 Shen, C. P.; Luo, J. G.; Yang, M. H.; Kong, L. Y. Sesquiterpene Dimers from the Roots of Chloranthus holostegius with Moderate Anti-inflammatory Activity. Phytochemistry 2017, 137, 117–122.
- 6 Wang, P.; Li, R. J.; Liu, R. H.; Jian, K. L.; Yang, M. H.; Yang, L.; Kong, L. Y.; Luo, J. Sarglaperoxides A and B, Sesquiterpene-Normonoterpene Conjugates with a Peroxide Bridge from the Seeds of Sarcandra glabra. Org. Lett. 2016, 18, 832–835.
- 7 Yan, H.; Qin, X. J.; Li, X. H.; Yu, Q.; Ni, W.; Li, H.; Liu, H. Y. Japonicones A-C: Three Lindenane Sesquiterpenoid Dimers with a 12-Membered Ring Core from Chloranthus japonicus. Tetrahedron Lett. 2019, 60, 713–717.
- 8 Chi, J.; Wei, S. S.; Gao, H. L.; Xu, D. Q.; Zhang, L. N.; Yang, L.; Xu, W. J.; Luo, J.; Kong, L. Y. Diverse Chemosensitizing 8,9-Secolindenane-Type Sesquiterpenoid Oligomers and Monomers from Sarcandra glabra. J. Org. Chem. 2019, 84, 9117–9126.
- 9 Zhou, B.; Liu, Q. F.; Dalal, S.; Cassera, M. B.; Yue, J. M. Fortunoids A−C, Three Sesquiterpenoid Dimers with Different Carbon Skeletons from Chloranthus fortunei. Org. Lett. 2017, 19, 734–737.
- 10 Fan, Y. Y.; Sun, Y. L.; Zhou, B.; Zhao, J. X.; Sheng, L.; Li, J. Y.; Yue, J. M. Hedyorienoids A and B, Two Sesquiterpenoid Dimers Featuring Different Polycyclic Skeletons from Hedyosmum orientale. Org. Lett. 2018, 20, 5435–5438.
- 11 Acebey, L.; Sauvain, M.; Beck, S.; Moulis, C.; Gimenez, A.; Jullian, V. Bolivianine, a New Sesterpene with an Unusual Skeleton from Hedyosmum angustifolium, and Its Isomer, Isobolivianine. Org. Lett. 2007, 9, 4693–4696.
- 12 Hou, X. M.; Li, Y. Y.; Shi, Y. W.; Fang, Y. W.; Chao, R.; Gu, Y. C.; Wang, C. Y.; Shao, C. L. Integrating Molecular Networking and 1H NMR to Target the Isolation of Chrysogeamides from a Library of Marine-Derived Penicillium Fungi. J. Org. Chem. 2019, 84, 1228–1237.
- 13 Reher, R.; Kim, H. W.; Zhang, C.; Mao, H. H.; Wang, M. X.; Nothias, L. F.; Rodriguez, A. M. C.; Glukhov, E.; Teke, B.; Leao, T.; Alexander, K. L.; Duggan, B. M.; Everbroeck, E. L. V.; Dorrestein, P. C.; Cottrell, G. W.; Gerwick, W. H. A Convolutional Neural Network-based approach for the Rapid Characterization of Molecularly Diverse Natural Products. J. Am. Chem. Soc. 2020, 142, 4114–4120.
- 14 Yang, J. Y.; Sanchez, L. M.; Rath, C. M.; Liu, X. T.; Boudreau, P. D.; Bruns, N.; Glukhov, E.; Wodtke, A. Felicio, R. D.; Fenner, A.; Wong, W. R.; Linington, R. G.; Zhang, L. X.; Debonsi, H. M.; Gerwick, W. H.; Dorrestein, P. C. Molecular Networking as a Dereplication Strategy. J. Nat. Prod. 2013, 76, 1686–1699.
- 15 Ren, Y. M.; Zhou, S. Z.; Zhang, T.; Qian, M. J.; Zhang, R.; Yao, S.; Zhu, H.; Tang, C. P.; Lin, L. G.; Ye, Y. Targeted Isolation of Two Disesquiterpenoid Macrocephadiolides A and B from Ainsliaea macrocephala Using a Molecular Networking-Based Dereplication Strategy. Org. Chem. Front. 2020, 7, 1481–1489.
- 16 Woo, S.; Kang, K. B.; Kim, J.; Sung, S. H. Molecular Networking Reveals the Chemical Diversity of Selaginellin Derivatives, Natural Phosphodiesterase-4 Inhibitors from Selaginella tamariscina. J. Nat. Prod. 2019, 82, 1820–1830.
- 17 Li, D.; Liu, H.; Ni, W.; Xiao, W. L.; He, L.; Guo, Z. Y.; Qin, X. J.; Liu, H. Y. Molecular Networking-Based Strategy for the Discovery of Polyacetylated 18-Norspirostanol Saponins from Trillium tschonoskii Maxim. Phytochemistry 2019, 168, 112125.
- 18 National Pharmacopeia Committee. In China Pharmacopeia, Part I, Chemical Industry Press, Beijing, 2015, pp. 223–224.
- 19 Wang, M. X.; Carver, J. J.; Phelan, V. V. et al. Sharing and Community Curation of Mass Spectrometry Data with Global Natural Products Social Molecular Networking. Nat. Biotechnol. 2016, 34, 828–837.
- 20 Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N. S.; Wang, J. T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504.
- 21 Wang, P.; Luo, J.; Zhang, Y. M.; Kong, L. Y. Sesquiterpene Dimers Esterified with Diverse Small Organic Acids from the Seeds of Sarcandra glabra. Tetrahedron 2015, 71, 5362–5370.
- 22 Alibe's, R.; March, P. D.; Figueredo, M.; Font, J.; Racamonde, M.; Parella, T. Highly Efficient and Diastereoselective Synthesis of (+)-Lineatin. Org. Lett. 2004, 6, 1449–1452.
- 23 Hart, J. D.; Burchill, L.; Day, A. J.; Newton, C. G.; Sumby, C. J.; Huang, D. M.; George, J. H. Visible Light Photoredox Catalysis Enables the Biomimetic Synthesis of Nyingchinoids A, B and D, and Rasumatranin D. Angew. Chem. Int. Ed. 2019, 58, 2791–2794.
- 24 Li, Q. G.; Zhao, K.; Peuronen, A.; Rissanen, K.; Enders, D.; Tang, Y. F. Enantioselective Total Syntheses of (+)-Hippolachnin A, (+)-Gracilioether A, (−)-Gracilioether E, and (−)-Gracilioether F. J. Am. Chem. Soc. 2018, 140, 1937–1944.
- 25 Parrish, J. D.; Ischay, M. A.; Lu, Z.; Guo, S.; Peters, N. R.; Yoon, T. P. Endoperoxide Synthesis by Photocatalytic Aerobic [2+2+2] Cycloadditions. Org. Lett. 2012, 14, 1640–1643.
- 26 Tsai, Y. C.; Chen, S. H.; Lin, L. C.; Fu, S. L. Anti-inflammatory Principles from Sarcandra glabra. J. Agric. Food Chem. 2017, 65, 6497−6505
- 27 Wei, S. S.; Chi, J.; Zhou, M. M.; Li, R. J.; Li, Y. R.; Luo, J.; Kong, L. Y. Anti-Inflammatory Lindenane Sesquiterpeniods and Dimers from Sarcandra glabra and Its Upregulating AKT/Nrf2/HO-1 Signaling Mechanism. Ind. Crops Prod. 2019, 137, 367–376.
- 28 Ni, G.; Zhang, H.; Liu, H. C.; Yang, S. P.; Geng, M. Y.; Yue, J. M. Cytotoxic Sesquiterpenoids from Sarcandra glabra. Tetrahedron 2013, 69, 564–569.
- 29 Tu, Y. Y. Artemisinin—A Gift from Traditional Chinese Medicine to the World (Nobel Lecture). Angew. Chem. Int. Ed. 2016, 55, 2−19.