Photoredox-Catalyzed Functionalization of Alkenes with Thiourea Dioxide: Construction of Alkyl Sulfones or Sulfonamides†
Yuewen Li
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
Search for more papers by this authorJin-Biao Liu
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorCorresponding Author
Fu-Sheng He
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jie Wu
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorYuewen Li
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
Search for more papers by this authorJin-Biao Liu
School of Metallurgical and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou, Jiangxi, 341000 China
Search for more papers by this authorCorresponding Author
Fu-Sheng He
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
E-mail: [email protected]; [email protected]Search for more papers by this authorCorresponding Author
Jie Wu
School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou, Zhejiang, 318000 China
State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032 China
E-mail: [email protected]; [email protected]Search for more papers by this authorSummary of main observation and conclusion
Sulfonylation of alkenes through photoredox-catalyzed functionalization of alkenes with thiourea dioxide under visible-light irradiation is achieved. The reaction of alkenes, thiourea dioxide and electrophiles provides a green and efficient access to alkyl sulfones and sulfonamides. A broad reaction scope is presented with good functional group compatibility and excellent regioselectivity. A plausible mechanism involving a radical addition process with sulfur dioxide radical anion (SO2-) derived from the oxidation of sulfur dioxide anion (SO22–) is proposed, which is supported by fluorescence quenching experiments.
Supporting Information
Filename | Description |
---|---|
cjoc201900505-sup-0001-SupInfo.pdfPDF document, 4.1 MB | Appendix S1: Supplementary Material |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1For reviews, see: (a) Bisseret, P.; Blanchard, N. Taming Sulfur Dioxide: A Breakthrough for Its Wide Utilization in Chemistry and Biology. Org. Biomol. Chem. 2013, 11, 5393–5398; (b) Deeming, A. S.; Emmett, E. J.; Richards-Taylor, C. S.; Willis, M. C. Rediscovering the Chemistry of Sulfur Dioxide: New Developments in Synthesis and Catalysis. Synthesis 2014, 2701–2710; (c) Liu, G.; Fan, C.; Wu, J. Fixation of Sulfur Dioxide into Small Molecules. Org. Biomol. Chem. 2015, 13, 1592–1599; (d) Emmett, E. J.; Willis, M. C. The Development and Application of Sulfur Dioxide Surrogates in Synthetic Organic Chemistry. Asian J. Org. Chem. 2015, 4, 602–611; (e) Qiu, G.; Zhou, K.; Gao, L.; Wu, J. Insertion of Sulfur Dioxide via a Radical Process: An Efficient Route to Sulfonyl Compounds. Org. Chem. Front. 2018, 5, 691–705; (f) Hofman, K.; Liu, N.-W.; Manolikakes, G. Radicals and Sulfur Dioxide: A Versatile Combination for the Construction of Sulfonyl-Containing Molecules. Chem. Eur. J. 2018, 24, 11852–11863; (g) Zheng, D.; Wu, J. Sulfur Dioxide Insertion Reactions for Organic Synthesis, Springer Singapore, 2017
- 2(a) Carreno, M. C. Applications of Sulfoxides to Asymmetric Synthesis of Biologically Active Compounds. Chem. Rev. 1995, 95, 1717–1760; (b) Xu, W.-M.; Han, F.-F.; He, M.; Hu, D.-Y.; He, J.; Yang, S.; Song, B.-A. Inhibition of Tobacco Bacterial Wilt with Sulfone Derivatives Containing an 1,3,4-Oxadiazole Moiety. J. Agric. Food Chem. 2012, 60, 1036–1041.
- 3(a) Harrak, Y.; Casula, G.; Basset, J.; Rosell, G.; Plescia, S.; Raffa, D.; Cusimano, M. G.; Pouplana, R.; Pujol, M. D. Synthesis, Anti-Inflammatory Activity, and in Vitro Antitumor Effect of a Novel Class of Cyclooxygenase Inhibitors: 4-(Aryloyl)phenyl Methyl Sulfones. J. Med. Chem. 2010, 53, 6560–6571; (b) Xie, W.; Xie, S.; Zhou, Y.; Tang, X.; Liu, J.; Yang, W.; Qiu, M. Design and Synthesis of Novel 5,6-Disubstituted Pyridine-2,3-dione-3-thiosemicarbazone Derivatives as Potential Anticancer Agents. Eur. J. Med. Chem. 2014, 81, 22–27; (c) Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, Synthesis and Biological Evaluations of Novel Pyridone-thiazole Hybrid Molecules as Antitumor Agents. Eur. J. Med. Chem. 2018, 145, 35–40.
- 4(a) Kakimoto, M.; Grunzinger, S. J.; Hayakawa, T. Hyperbranched Poly(ether sulfone)s: Preparation and Application to Ion-exchange Membranes. Polym. J. 2010, 42, 697–705; (b) Sasabe, H.; Seino, Y.; Kimura, M.; Kido, J. A m-Terphenyl-Modifed Sulfone Derivative as a Host Material for High-Efficiency Blue and Green Phosphorescent OLEDs. Chem. Mater. 2012, 24, 1404–1406; (c) Wang, M.; Chen, S.; Jiang, X. Construction of Functionalized Annulated Sulfone via SO2/I Exchange of Cyclic Diaryliodonium Salts. Org. Lett. 2017, 19, 4916–4919.
- 5For selected examples, see: (a) Xie, L.-Y.; Peng, S.; Liu, F.; Chen, G.-R.; Xia, W.; Yu, X.; Li, W.-F.; Cao, Z.; He, W.-M. Metal-free Deoxygenative Sulfonylation of Quinoline N-oxides with Sodium Sulfinates via a Dual Radical Coupling Process. Org. Chem. Front. 2018, 5, 2604–2609; (b) Xie, L.-Y.; Peng, S.; Jiang, L.-L.; Peng, X.; Xia, W.; Yu, X.; Wang, X.-X.; Cao, Z.; He, W.-M. AgBF4-catalyzed Deoxygenative C2-Amination of Quinoline N-oxides with Isothiocyanates. Org. Chem. Front. 2019, 6, 167–171; (c) Xie, L.-Y.; Peng, S.; Tan, J.-X.; Sun, R.-X.; Yu, X.; Dai, N.-N.; Tang, Z.-L.; Xu, X.; He, W.-M. Waste-Minimized Protocol for the Synthesis of Sulfonylated N-Heteroaromatics in Water. ACS Sustainable Chem. Eng. 2018, 6, 16976–16981.
- 6(a) Louie, D. K. Handbook of Sulfuric Acid Manufacturating, DKL, Thornhill, Ontario, Canada, 1961; (b) Wright, S. W.; Hallstrom, K. N. A Convenient Preparation of Heteroaryl Sulfonamides and Sulfonyl Fluorides from Heteroaryl Thiols. J. Org. Chem. 2006, 71, 1080–1084; (c) Prakash, G. K. S.; Mathew, T.; Olah, G. A. Chlorotrimethylsilane− Nitrate Salts as Oxidants: Direct Oxidative Conversion of Thiols and Disulfides to Sulfonyl Chlorides. J. Org. Chem. 2007, 72, 5847–5850; (d) Bahrami, K.; Khodaei, M. M.; Khaledian, D. Synthesis of Sulfonyl Chlorides and Thiosulfonates from H2O2–TiCl4. Tetrahedron Lett. 2012, 53, 354–358.
- 7For recent reviews, see: (a) Pan, X.-Q.; Zou, J.-P.; Yi, W.-B.; Zhang, W. Recent Advances in Sulfur- and Phosphorous-centered Radical Reactions for the Formation of S-C and P-C Bonds. Tetrahedron 2015, 71, 7481–7529; (b) Fang, Y.; Luo, Z.; Xu, X. Recent Advances in the Synthesis of Vinyl Sulfones. RSC Adv. 2016, 6, 59661–59676; (c) Zhu, J.; Yang, W.-C.; Wang, X.-D.; Wu, L. Photoredox Catalysis in C-S Bond Construction: Recent Progress in Photo-Catalyzed Formation of Sulfones and Sulfoxides. Adv. Synth. Catal. 2018, 360, 386–400.
- 8For selected examples, see: (a) Mantrand, N.; Renaud, P. Azidosulfonylation of Alkenes, Dienes, and Enynes. Tetrahedron 2008, 64, 11860–11864; (b) Lu, Q.; Zhang, J.; Wei, F.; Qi, Y.; Wang, H.; Liu, Z.; Lei, A. Aerobic Oxysulfonylation of Alkenes Leading to Secondary and Tertiary β-Hydroxysulfones. Angew. Chem. Int. Ed. 2013, 52, 7156–7159; (c) Xu, Y.; Tang, X.; Hu, W.; Wu, W.; Jiang, H. Transition-metal- free Synthesis of Vinyl Sulfones via Tandem Cross-decarboxylative/ coupling Reactions of Sodium Sulfinates and Cinnamic Acids. Green Chem. 2014, 16, 3720–3723; (d) Li, H.-S.; Liu, G. Copper/Silver-Mediated Cascade Reactions for the Construction of 2-Sulfonylbenzo[b]furans from trans-2-Hydroxycinnamic Acids and Sodium Sulfinates. J. Org. Chem. 2014, 79, 509–516; (e) Wei, W.; Wen, J.; Yang, D.; Du, J.; You, J.; Wang, H. Catalyst-free Direct Arylsulfonylation of N-arylacrylamides with Sulfinic Acids: A Convenient and Efficient Route to Sulfonated Oxindoles. Green Chem. 2014, 16, 2988–2991; (f) Xia, D.; Miao, T.; Li, P.; Wang, L. Visible-Light Photoredox Catalysis: Direct Synthesis of Sulfonated Oxindoles from N-Arylacrylamides and Arylsulfinic Acids by Means of a Cascade C-S/C-C Formation Process. Chem. Asian J. 2015, 10, 1919–1925; (g) Meyer, A. U.; Jäger, S.; Hari, D. P.; König, B. Visible Light-Mediated Metal-Free Synthesis of Vinyl Sulfones from Aryl Sulfinates. Adv. Synth. Catal. 2015, 357, 2050–2054; (h) Lu, Q.; Zhang, J.; Peng, P.; Zhang, G.; Huang, Z.; Yi, H.; Miller, J. T.; Lei, A. Operando X-ray Absorption and EPR Evidence for a Single Electron Redox Process in Copper Catalysis. Chem. Sci. 2015, 6, 4851–4854; (i) Yang, W.; Yang, S.; Li, P.; Wang, L. Visible-light Initiated Oxidative Cyclization of Phenyl Propiolates with Sulfinic Acids to Coumarin Derivatives under Metal-Free Conditions. Chem. Commun. 2015, 51, 7520–7523; (j) Yuan, Y.; Cao, Y.; Lin, Y.; Li, Y.; Huang, Z.; Lei, A. Electrochemical Oxidative Alkoxysulfonylation of Alkenes Using Sulfonyl Hydrazines and Alcohols with Hydrogen Evolution. ACS Catal. 2018, 8, 10871–10875; (k) Li, Y.; Ma, F.; Li, P.; Miao, T.; Wang, L. Hydrogen and Sulfonyl Radical Generation for the Hydrogenation and Arylsulfonylation of Alkenes Driven by Photochemical Activity of Hydrogen Bond Donor-Acceptor Complexes. Adv. Synth. Catal. 2019, 361, 1606–1616.
- 9For recent reviews, see: (a) Ye, S.; Qiu, G.; Wu, J. Inorganic Sulfites as the Sulfur Dioxide Surrogates in Sulfonylation Reactions. Chem. Commun. 2019, 55, 1013–1019;
(b) Ye, S.; Li, X.; Xie, W.; Wu, J. Photoinduced Sulfonylation Reactions through the Insertion of Sulfur Dioxide. Eur. J. Org. Chem. 2019, DOI: https://doi.org/10.1002/ejoc.201900396.
10.1002/ejoc.201900396 Google Scholar
- 10For selected examples, see: (a) Zheng, D.; An, Y.; Li, Z.; Wu, J. Metal-free Aminosulfonylation of Aryldiazonium Tetrafluoroborates with DABCO·(SO2)2 and Hydrazines. Angew. Chem. Int. Ed. 2014, 53, 2451–2454; (b) Zheng, D.; Yu, J.; Wu, J. Generation of Sulfonyl Radicals from Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: The Synthesis of 3-Sulfonated Coumarins. Angew. Chem. Int. Ed. 2016, 55, 11925–11929; (c) Liu, F.; Wang, J.-Y.; Zhou, P.; Li, G.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Merging [2+2] Cycloaddition with Radical 1,4-Addition: Metal-free Access to Functionalized Cyclobuta[a]naphthalen-4-ols. Angew. Chem. Int. Ed. 2017, 56, 15570–15574; (d) Wang, H.; Sun, S.; Cheng, J. Copper-Catalyzed Arylsulfonylation and Cyclizative Carbonation of N-(Arylsulfonyl)acrylamides Involving Desulfonative Arrangement toward Sulfonated Oxindoles. Org. Lett. 2017, 19, 5844–5847; (e) Sheng, J.; Li, Y.; Qiu, G. Reductive Insertion of Sulfur Dioxide for the Synthesis of Trifluoromethyl Thiolsulphonates through a One-pot Reaction of Aniline and Trifluoromethanesulfanylamide. Org. Chem. Front. 2017, 4, 95–100; (f) Wang, J. M.; Fan, Q.; Jiang, X. Metal-free Construction of Primary Sulfonamides through Three Diverse Salts. Green Chem. 2018, 20, 5469–5473; (g) Li, G.; Gan, Z.; Kong, K.; Dou, X.; Yang, D. Metal-Free Synthesis of Thiosulfonates via Insertion of Sulfur Dioxide. Adv. Synth. Catal. 2019, 361, 1808–1814; (h) Zhu, T.-H.; Zhang, X.-C.; Cui, X.-L.; Zhang, Z.-Y.; Jiang, H.; Sun, S.-S.; Zhao, L.-L.; Zhao, K.; Loh, T.-P. Direct C(sp2)-H Arylsulfonylation of Enamides via Iridium(III)-Catalyzed Insertion of Sulfur Dioxide with Aryldiazonium Tetrafluoroborates. Adv. Synth. Catal. 2019, 361, 3593–3598; (i) Qin, X.-Y.; He, L.; Li, J.; Hao, W.-J.; Tu, S.-J.; Jiang, B. Regioselective Synthesis of Polycyclic Sulfones via Radical-induced Three-component Bicyclization Cascades. Chem. Commun. 2019, 55, 3227–3230; (j) He, F.-S.; Wu, Y.; Li, X.; Xia, H.; Wu, J. Photoredox-catalyzed Sulfonylation of Alkenylcyclobutanols with the Insertion of Sulfur Dioxide through Semipinacol Rearrangement. Org. Chem. Front. 2019, 6, 1873–1878; (k) Gong, X.; Li, X.; Xie, W.; Wu, J.; Ye, S. An Unexpected Reaction of Aryldiazonium Tetrafluoroborates, Sodium Metabisulfite, and Thiourea under Photoinduced Conditions. Org. Chem. Front. 2019, 6, 1863–1867.
- 11(a) Li, Y.; Zheng, D.; Li, Z.; Wu, J. Generation of N-aminosulfonamides via a Photo-induced Fixation of Sulfur Dioxide into Aryl/Alkyl Halides. Org. Chem. Front. 2016, 3, 574–578; (b) Gong, X.; Ding, Y.; Fan, X.; Wu, J. Synthesis of β-Keto Sulfones via Coupling of Aryl/Alkyl Halides, Sulfur Dioxide and Silyl Enolates through Metal-free Photoinduced C-X Bond Dissociation. Adv. Synth. Catal. 2017, 359, 2999–3004; (c) Zhang, J.; Zhou, K.; Qiu, G.; Wu, J. Photoinduced Synthesis of Allylic Sulfones Using Potassium Metabisulfite as the Source of Sulfur Dioxide. Org. Chem. Front. 2019, 6, 36–40; (d) Ye, S.; Zheng, D.; Wu, J.; Qiu, G. Photoredox-catalyzed Sulfonylation of Alkyl Iodides, Sulfur Dioxide, and Electron-deficient Alkenes. Chem. Commun. 2019, 55, 2214–2217; (e) Ye, S.; Xiang, T.; Li, X.; Wu, J. Metal-catalyzed radical-type transformation of unactivated alkyl halides with C-C bond formation under photoinduced conditions, Org. Chem. Front. 2019, 6, 2183–2199.
- 12(a) Liu, N.-W.; Liang, S.; Manolikakes, G. Visible-Light Photoredox- Catalyzed Aminosulfonylation of Diaryliodonium Salts with Sulfur Dioxide and Hydrazines. Adv. Synth. Catal. 2017, 359, 1308–1319; (b) Gong, X.; Chen, J.; Liu, J.; Wu, J. Synthesis of Thiophosphates through a Three-component Reaction by Using Sulfur Dioxide as the Sulfur Source. Org. Chem. Front. 2017, 4, 2221–2225; (c) Chen, Z.; Liu, N.-W.; Bolte, M.; Rena, H.; Manolikakes, G. Visible-light Mediated 3-Component Synthesis of Sulfonylated Coumarins from Sulfur Dioxide. Green Chem. 2018, 20, 3059–3070.
- 13(a) Li, Y.; Xiang, Y.; Li, Z.; Wu, J. Direct Vicinal Difunctionalization of Alkynes through Trifluoromethylation and Aminosulfonylation via Insertion of Sulfur Dioxide under Catalyst-Free Conditions. Org. Chem. Front. 2016, 3, 1493–1497; (b) Li, Y.; Mao, R.; Wu, J. N-Radical Initiated Aminosulfonylation of Unactivated C(sp3)-H Bond through Insertion of Sulfur Dioxide. Org. Lett. 2017, 19, 4472–4475; (c) Liu, Y.; Lin, Q.; Xiao, Z.; Zheng, C.; Guo, Y.; Chen, Q.-Y.; Liu, C. Zinc-Mediated Intermolecular Reductive Radical Fluoroalkylsulfination of Unsaturated Carbon-Carbon Bonds with Fluoroalkyl Bromides and Sulfur Dioxide. Chem. Eur. J. 2019, 25, 1824–1828; (d) Zheng, M.; Li, G.; Lu, H. Photoredox- or Metal-Catalyzed in Situ SO2-Capture Reactions: Synthesis of β-Ketosulfones and Allylsulfones. Org. Lett. 2019, 21, 1216–1220; (e) Gong, X.; Wang, M.; Ye, S. Wu, J. Synthesis of 3-(Methylsulfonyl)benzo[b]thiophenes from Methyl(2-alkynylphenyl)sulfanes and Sodium Metabisulfite via a Radical Relay Strategy. Org. Lett. 2019, 21, 1156–1160.
- 14(a) Wang, Y.; Du, B.; Sha, W.; Han, J.; Pan, Y. Transition-metal-free Oxidative Reaction of Hydrazines and Potassium Metabisulfite for Preparation of Sulfonohydrazides. Org. Chem. Front. 2017, 4, 1313–1317; (b) Liu, T.; Li, Y.; Lai, L.; Cheng, J.; Sun, J.; Wu, J. Photocatalytic Reaction of Potassium Alkyltrifluoroborates and Sulfur Dioxide with Alkenes. Org. Lett. 2018, 20, 3605–3608; (c) Liu, T.; Ding, Y.; Fan, X.; Wu, J. Photoinduced Synthesis of (E)-Vinyl Sulfones through the Insertion of Sulfur Dioxide. Org. Chem. Front. 2018, 5, 3153–3157; (d) Wang, X.; Yang, M.; Xie, W. Fan, X.; Wu, J. Photoredox-catalyzed Hydrosulfonylation Reaction of Electron-deficient Alkenes with Substituted Hantzsch Esters and Sulfur Dioxide. Chem. Commun. 2019, 55, 6010–6013; (e) Ye, S.; Li, X.; Xie, W.; Wu, J. Three-Component Reaction of Potassium Alkyltrifluoroborates, Sulfur Dioxide and Allylic Bromides under Visible-light Irradiation. Asian J. Org. Chem. 2019, 8, 893–898.
- 15 Ouchi, A.; Obata, T.; Oishi, T.; Sakai, H.; Hayashi, T.; Ando, W.; Ito, J. Reductive Total Chlorine Free Photochemical Bleaching of Cellulosic Fabrics, an Energy Conserving Process. Green Chem. 2004, 6, 198–205.
- 16For selected examples, see: (a) Nakagawa, K.; Minami, K. Reduction of Organic Compounds with Thiourea Dioxide. I. Reduction of Ketones to Secondary Alcohols. Tetrahedron Lett. 1972, 13, 343–346;
(b) Mangoni, R. C. L.; Palumbo, G.; Previtera, L. The Role of Thiourea ss-Dioxide in the Reduction of Steroidal Ketones. Tetrahedron Lett. 1975, 16, 1041–1042;
10.1016/S0040-4039(00)72639-6 Google Scholar(c) Santos, R. B.; Brocksom, T. J.; Brocksom, U. A Convenient Deoxygenation of α,β-epoxy Ketones to Enones. Tetrahedron Lett. 1997, 38, 745–748; (d) Cao, P.; Li, C.-Y.; Kang, Y.-B.; Xie, Z.; Sun, X.-L.; Tang, Y. Ph3As-Catalyzed Wittig-type Olefination of Aldehydes with Diazoacetate in the Presence of Na2S2O4. J. Org. Chem. 2007, 72, 6628–6630; (e) Mei, Y.-Q.; Liu, J.-T.; Liu, Z.-J. Regio- and Stereoselective Addition of Perfluoroalkyl Iodides to Allenes Conjugated with Carbon-Oxygen or Phosphorus-Oxygen Double Bonds. Synthesis 2007, 5, 739–743; (f) Kondratov, I. S.; Bugera, M. Y.; Tolmachova, N. A.; Posternak, G. G.; Daniliuc, C. G.; Haufe, G. Radical Reactions of Alkyl 2-Bromo-2,2-difluoroacetates with Vinyl Ethers: “Omitted” Examples and Application for the Synthesis of 3,3-Difluoro- GABA. J. Org. Chem. 2015, 80, 12258–12264; (g) Yu, F.; Mao, R.; Yu, M.; Gu, X.; Wang, Y. Generation of Aryl Radicals from Aryl Halides: Rongalite-Promoted Transition-Metal-Free Arylation. J. Org. Chem. 2019, 84, 9946–9956.
- 17(a) Tordeux, M.; Langlois, B.; Wakselman, C. Reactions of Bromotrifluoromethane and Related Halides. 8. Condensations with Dithionite and Hydroxymethanesulfinate Salts. J. Org. Chem. 1989, 54, 2452–2453; (b) Shavnya, A.; Coffey, S. B.; Hesp, K. D.; Ross, S. C.; Tsai, A. S. Reaction of Alkyl Halides with Rongalite: One-Pot and Telescoped Syntheses of Aliphatic Sulfonamides, Sulfonyl Fluorides, and Unsymmetrical Sulfones. Org. Lett. 2016, 18, 5848–5851.
- 18(a) Liu, R.; Li, M.; Xie, W.; Zhou, H.; Zhang, Y.; Qiu, G. Tunable Synthesis of 3-Hydroxylisoquinolin-1,4-dione and Isoquinolin-1-one Enabled by Copper-Catalyzed Radical 6-endo Aza-cyclization of 2-Alkynylbenzamide, J. Org. Chem. 2019, 84, 11763–11766; (b) Wang, Y.-C.; Wang, R.-X.; Qiu, G.; Zhou, H.; Xie, W.; Liu, J.-B., ortho-Amide-directed 2,4-dibromohydration of conjugated enynes. Org. Chem. Front. 2019, 6, 2471–2474; (c) Kotha, S.; Khedkar, P. Rongalite: A Useful Green Reagent in Organic Synthesis. Chem. Rev. 2012, 112, 1650–1680; (d) Yuan, S.-T.; Wang, Y.-H.; Liu, J.-B.; Qiu, G. NBS-Mediated Oxygen Transfer Reaction of Carbonyl in Ester: Efficient Synthesis of Benzil-o-carboxylate Derivative From o-Alkynylbenzoate, Adv. Synth. Catal. 2017, 359, 1981–1989.
- 19(a)Zhang, W.; Luo, M. Iron-catalyzed Synthesis of Arylsulfinates through Radical Coupling Reaction. Chem. Commun. 2016, 52, 2980–2983; (b) Wang, M.; Tang, B.-C.; Wang, J.-G.; Xiang, J.-C.; Guan, A-Y.; Huang, P.-P.; Guo, W.-Y.; Wu, Y.-D.; Wu, A.-X. The Triple Role of Rongalite in Aminosulfonylation of Aryldiazonium Tetrafluoroborates: Synthesis of N-aminosulfonamides via a Radical Coupling Reaction. Chem. Commun. 2018, 54, 7641–7644; (c) Li, Y.; Liu, T.; Qiu, G.; Wu, J. Catalyst-Free Sulfonylation of (Hetero)aryl Iodides with Sodium Dithionite. Adv. Synth. Catal. 2019, 361, 1154–1159; (d) Ye, S.; Li, Y.; Wu, J.; Li, Z. Thiourea Dioxide as a Source of Sulfonyl Groups: Photoredox Generation of Sulfones and Sulfonamides from Heteroaryl/Aryl Halides. Chem. Commun. 2019, 55, 2489–2492; (e) Liu, Y.; Lin, Q.; Xiao, Z.; Zheng, C.; Guo, Y.; Chen, Q.-Y.; Liu, C. Zinc-Mediated Intermolecular Reductive Radical Fluoroalkylsulfination of Unsaturated Carbon–Carbon Bonds with Fluoroalkyl Bromides and Sulfur Dioxide. Chem. Eur. J. 2019, 25, 1824–1828; (f) Chen, S.; Li, Y.; Wang, M.; Jiang, X. General sulfone construction via sulfur dioxide surrogate control. Green Chem. 2020, 22, 322–326.
- 20For recent reviews, see: (a) Tang, S.; Liu, K.; Liu, C.; Lei, A. Olefinic C-H Functionalization through Radical Alkenylation. Chem. Soc. Rev. 2015, 44, 1070–1082; (b) Courant, T.; Masson, G. Recent Progress in Visible-light Photoredox-catalyzed Intermolecular 1,2-Difunctionalization of Double Bonds via an ATRA-Type Mechanism. J. Org. Chem. 2016, 81, 6945–6952; (c) Yi, H.; Zhang, G.; Wang, H.; Huang, Z.; Wang, J.; Singh, A. K.; Lei, A. Recent Advances in Radical C-H Activation/ Radical Cross-Coupling. Chem. Rev. 2017, 117, 9016–9085; (d) Yuan, S. T.; Zhou, H.; Gao, L.; Liu, J. B.; Qiu, G. Regioselective Neighboring- Group-Participated 2,4-Dibromohydration of Conjugated Enynes: Synthesis of 2-(2,4-Dibromobut-2-enoyl)benzoate and Its Applications. Org. Lett. 2018, 20, 562–565.
- 21(a) Wang, Y.-C.; Liu, J.-B.; Zhou, H.; Xie, W.; Rojsitthisak, P.; Qiu, G. ortho-Hydroxylative ipso-Cyclization of N-arylpropiolamide. J. Org. Chem. 2020, DOI:10.1021/acs.joc.9b02590; (b) Zhang, J.; Xie, W.; Ye, S.; Wu, J. Synthesis of β-Hydroxysulfones through a Copper(ii)-catalyzed Multicomponent Reaction with the Insertion of Sulfur Dioxide. Org. Chem. Front. 2019, 6, 2254–2259; (c) Zhang, J.; Li, X.; Xie, W.; Ye, S.; Wu, J. Photoredox-catalyzed Sulfonylation of O-Acyl Oximes via Iminyl Radicals with the Insertion of Sulfur Dioxide. Org. Lett. 2019, 21, 4950–4954; (d) Zong, Y.; Lang, Y.; Yang, M.; Li, X.; Fan, X.; Wu, J. Synthesis of β-Sulfonyl Amides through a Multicomponent Reaction with the Insertion of Sulfur Dioxide under Visible Light Irradiation. Org. Lett. 2019, 21, 1935–1938.