Recent Advances in Hydrometallation of Alkenes and Alkynes via the First Row Transition Metal Catalysis†
Jianhui Chen
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035 China
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
Search for more papers by this authorJun Guo
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
Search for more papers by this authorCorresponding Author
Zhan Lu
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
E-mail: [email protected]Search for more papers by this authorJianhui Chen
College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang, 325035 China
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
Search for more papers by this authorJun Guo
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
Search for more papers by this authorCorresponding Author
Zhan Lu
Department of chemistry, Zhejiang University, Hangzhou, Zhejiang, 310027 China
E-mail: [email protected]Search for more papers by this authorAbstract
Hydrometallation of alkenes and alkynes provides a straightforward route to access alkyl- or alkenyl-metal reagents, which have a wide range of applications in organic transformations. In recent years, the first row transition metals (such as copper, nickel, cobalt, iron, etc.) have emerged high activity and selectivity in this area with the aid of a variety of ligands. This review covers the recent advances in the hydrometallation of minimally functionalized unsaturated C—C bonds (including alkenes, alkynes, dienes, allenes, enynes, etc.), as well as transformations involving catalytic hydrometallation process via the first row transition metal catalysis.
References
- 1For selected reviews, see: (a) Anastas, P. T.; Kirchhoff, M. N. Acc. Chem. Res. 2002, 35, 686; (b) Tucker, J. L. Org. Process Res. Dev. 2010, 14, 328; (c) Tucker, J. L. Org. Process Res. Dev. 2006, 10, 315; (d) Zhou, Q.-L. Angew. Chem. Int. Ed. 2016, 55, 5352.
- 2For selected reviews, see: (a) Blaser, H.-U.; Federsel, H.-J. Asymmetric Catalysis on Industrial Scale: Challenges, Approaches and Solutions, Wiley-VCH, Weinheim, 2nd Edn, 2010;
(b) van Leeuwen, P. W. N. M.; Chadwick, J. C. Homogeneous Catalysts: Activity-Stability-Deactivation, Wiley-VCH, Weinheim, 2011.
10.1002/9783527635993 Google Scholar
- 3For selected reviews, see: (a) Bullck, M. Catalysis without Precious Metals, Wiley-VCH, Weinheim, 2011; (b) Chirik, P. J.; Morris, R. Acc. Chem. Res. 2015, 48, 2495.
- 4For selected reviews, see: (a) Bullock, R. M.; Helm, M. L. Acc. Chem. Res. 2015, 48, 2017; (b) Hanson, S. K.; Baker, R. T. Acc. Chem. Res. 2015, 48, 2037; (c) Yoshida, H. ACS Catal. 2016, 6, 1799; (d) Crossley, S. W. M.; Obradors, C.; Martinez, R. M.; Shenvi, R. A. Chem. Rev. 2016, 116, 8912; (e) Takeda, H.; Cometto, C.; Ishitani, O.; Robert, M. ACS Catal. 2017, 7, 70; (f) Chen, J.; Lu, Z. Org. Chem. Front. 2018, 5, 260; (g) Obligacion, J. V.; Chirik, P. J. Nature Rev. Chem. 2018, 2, 15; (h) Peng, J.-B.; Wu, F.-P.; Wu, X.-F. Chem. Rev. 2018, DOI: https://doi.org/10.1021/acs.chemrev.8b00068; (i) Zhao, Y.; Liu, Z. Chin. J. Chem. 2018, 36, 455; (j) Zhang, Z.; Butt, N. A.; Zhou, M.; Liu, D.; Zhang, W. Chin. J. Chem. 2018, 36, 443.
- 5For selected reviews, see: (a) Jenkins, P. R. Organometallic Reagents in Synthesis; Oxford University Press Oxford, 1992; (b) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417; (c) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
- 6
For selected reviews, see: (a) Dzhemilev, U. M.; Ibragimov, A. G. In Modern Reduction Methods, Eds.: P. G. Andersson; I. J. Munslow, Wiley-VCH, Weinheim, 2008, p. 447;
(b) Ananikov, V. P.; Tanaka, T. Hydrofunctionalization, Springer, Heidelberg, 2013;
10.1007/978-3-642-33735-2 Google Scholar(c) Trost, B. M.; Ball, Z. T. Synthesis 2005, 853.
- 7For selected reviews, see: (a) Krause, N. Modern Organocopper Chemistry, Wiley-VCH, Weinheim, 2002;
(b) Alexakis, A.; Krause, N.; Woodward, S. Copper-Catalyzed Asymmetric Synthesis, Wiley-VCH, Weinheim, 2014;
10.1002/9783527664573 Google Scholar(c) Reymond, S.; Cossy, J. Chem. Rev. 2008, 108, 5359; (d) Jerphagnon, T.; Pizzuti, M. G.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2009, 38, 1039; (e) Wendlandt, A. E.; Suess, A. M.; Stahl, S. S. Angew. Chem. Int. Ed. 2011, 50, 11062; (f) Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3464; (g) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234; (h) McCann, S. D.; Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756; (i) Guo, X.-X.; Gu, D.-W.; Wu, Z.; Zhang, W. Chem. Rev. 2015, 115, 1622; (j) Bhunia, S.; Pawar, G. G.; Kumar, S. V.; Jiang, Y.; Ma, D. Angew. Chem. Int. Ed. 2017, 56, 16136; (k) Li, X.; Jiao, N. Chin. J. Chem. 2017, 35, 1349; (l) Joseph, P. J. A.; Priyadarshini, S. Org. Process Res. Dev. 2017, 21, 1889.
- 8For selected reviews, see: (a) Rendler, S.; Oestreich, M. Angew. Chem. Int. Ed. 2007, 46, 498; (b) Deutsch, C.; Krause, N. Chem. Rev. 2008, 108, 2916; (c) Fujihara, T.; Semba, K.; Terao, J.; Tsuji, Y. Catal. Sci. Technol. 2014, 4, 1699; (d) Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Tetrahedron 2015, 71, 2183; (e) Liu, Y.; Zhang, W. Chin. J. Org. Chem. 2016, 36, 2249; (f) Sorádová, Z.; Šebesta, R. ChemCatChem 2016, 8, 2581; (g) Suess, A. M.; Lalic, G. Synlett 2016, 27, 1165; (h) Pirnot, M. T.; Wang, Y.; Buchwald, S. L. Angew. Chem. Int. Ed. 2016, 55, 48.
- 9 Wurtz, A. Ann. Chim. 1844, 11, 250.
- 10 Bezman, S. A.; Churchill, M. R.; Osborn, J. A.; Wormald, J. J. Am. Chem. Soc. 1971, 93, 2063.
- 11 Mahoney, W. S.; Brestensky, D. M.; Stryker, J. M. J. Am. Chem. Soc. 1988, 110, 291.
- 12(a) Lemmen, T. H.; Folting, K.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1985, 107, 7774; (b) Brestensky, D. M.; Huseland, D. E.; McGettigan, C.; Stryker, J. M. Tetrahedron Lett. 1988, 29, 3749.
- 13 Mankad, N. P.; Laitar, D. S.; Sadighi, J. P. Organometallics 2004, 23, 3369.
- 14For selected reviews, see: (a) Kluwer, A. M.; Elsevier, C. J. In Handbook of Homogeneous Hydrogenation, Eds.: J. G. Vries; C. J. Elseveir, Wiley-VCH, Weinheim, 2007, p. 374;
(b) Munslow, I. J. In Modern Reduction Methods, Eds.: P. G. Andersson; I. J. Munslow, Wiley-VCH, Weinheim, 2008, p. 363;
10.1002/9783527622115.ch15 Google Scholar(c) Molnár, A.; Sárkány, A.; Varga, M. J. Mol. Catal. A: Chem. 2001, 173, 185; (d) Oger, C.; Balas, L.; Durand, T.; Galano, J.-M. Chem. Rev. 2013, 113, 1313; (e) Chinchilla, R.; Nájera, C. Chem. Rev. 2014, 114, 1783; (f) Swamy, K. C. K.; Reddy, A. S.; Sandeep, K.; Kalyani, A. Tetrahedron Lett. 2018, 59, 419.
- 15 Yoshida, T.; Negishi, E. J. Chem. Soc., Chem. Commun. 1974, 762.
- 16 Semba, K.; Fujihara, T.; Xu, T.; Terao, J.; Tsuji, Y. Adv. Synth. Catal. 2012, 354, 1542.
- 17 Whittaker, A. M.; Lalic, G. Org. Lett. 2013, 15, 1112.
- 18(a) Pape, F.; Thiel, N. O.; Teichert, J. F. Chem. Eur. J. 2015, 21, 15934; (b) Thiel, N. O.; Kemper, S.; Teichert, J. F. Tetrahedron 2017, 73, 5023.
- 19For selected reviews, see: (a) Hall, D. G. Boronic Acids: Preparation and Applications in Organic Synthesis and Medicine, Wiley-VCH, Weinheim, 2005; (b) Dhillon, R. S. Hydroboration and Organic Synthesis: 9-Borabicyclo [3.3.1] Nonane (9-BBN), Springer, Heidelberg, 2007; (c) Doucet, H. Eur. J. Org. Chem. 2008, 2013; (d) Jana, R.; Pathak, T. P.; Sigman, M. S. Chem. Rev. 2011, 111, 1417; (e) Scott, H. K.; Aggarwal, V. K. Chem. Eur. J. 2011, 17, 13124.
- 20 Männig, D.; Nöth, H. Angew. Chem. Int. Ed. Engl. 1985, 24, 878.
- 21For selected reviews, see: (a) Burgess, K.; Ohlmeyer, M. J. Chem. Rev. 1991, 91, 1179; (b) Carroll, A.; O'Sullivan, T. P.; Guiry, P. J. Adv. Synth. Catal. 2005, 347, 609.
- 22 Noh, D.; Chea, H.; Ju, J.; Yun, J. Angew. Chem. Int. Ed. 2009, 48, 6062.
- 23(a) Noh, D.; Yoon, S. K.; Won, J.; Lee, J. Y.; Yun, J. Chem. Asian J. 2011, 6, 1967; (b) Feng, X.; Jeon, H.; Yun, J. Angew. Chem. Int. Ed. 2013, 52, 3989.
- 24 Lee, H.; Lee, B. Y.; Yun, J. Org. Lett. 2015, 17, 764.
- 25 Jang, W. J.; Song, S. M.; Moon, J. H.; Lee, J. Y.; Yun, J. J. Am. Chem. Soc. 2017, 139, 13660.
- 26 Xi, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2016, 138, 6703.
- 27 Xi, Y.; Hartwig, J. F. J. Am. Chem. Soc. 2017, 139, 12758.
- 28 Grigg, R. D.; Hoveln, R. V.; Schomaker, J. M. J. Am. Chem. Soc. 2012, 134, 16131.
- 29 Hoveln, R. V.; Hudson, B. M.; Wedler, H. B.; Bates, D. M.; Gros, G. L.; Tantillo, D. J.; Schomaker, J. M. J. Am. Chem. Soc. 2015, 137, 5346.
- 30 Semba, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2012, 18, 4179.
- 31 Zhu, G.; Kong, E.; Feng, H.; Qian, Z. J. Org. Chem. 2014, 79, 1786.
- 32 Bidal, Y. D.; Lazreg, F.; Cazin, C. S. J. ACS Catal. 2014, 4, 1564.
- 33 Jang, W. J.; Lee, W. L.; Moon, J. H.; Lee, J. Y.; Yun, J. Org. Lett. 2016, 18, 1390.
- 34 Huang, Y.; del Pozo, J.; Torker, S.; Hoveyda, A. H. J. Am. Chem. Soc. 2018, 140, 2643.
- 35 Sang, H. L.; Yu, S.; Ge, S. Org. Chem. Front. 2018,
- 36For selected reviews, see: (a) Müller, T. E.; Beller, M. Chem. Rev. 1998, 98, 675; (b) Müller, T. E.; Hultzsch, K. C.; Yus, M.; Foubelo, F.; Tada, M. Chem. Rev. 2008, 108, 3795; (c) Hannedouche, J.; Schulz, E. Chem. Eur. J. 2013, 19, 4972; (d) Huang, L.; Arndt, M.; Gooßen, K.; Heydt, H.; Gooßen, L. J. Chem. Rev. 2015, 115, 2596; (e) Bernoud, E.; Lepori, C.; Mellah, M.; Schulz, E.; Hannedouche, J. Catal. Sci. Technol. 2015, 5, 2017.
- 37 Miki, Y.; Satoh, T.; Miura, M. Angew. Chem. Int. Ed. 2013, 52, 10830.
- 38 Miki, Y.; Hirano, K.; Satoh, T.; Miura, M. Org. Lett. 2014, 16, 1498.
- 39 Nishikawa, D.; Hirano, K.; Miura, M. J. Am. Chem. Soc. 2015, 137, 15620.
- 40 Zhu, S.; Niljianskul, N.; Buchwald, S. L. J. Am. Chem. Soc. 2013, 135, 15746.
- 41 Niljianskul, N.; Zhu, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2015, 54, 1638.
- 42 Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2014, 136, 15913.
- 43 Yang, Y.; Shi, S.-L.; Niu, D.; Liu, P.; Buchwald, S. L. Science 2015, 349, 6243.
- 44 Niu, D.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 9716.
- 45 Ichikawa, S.; Zhu, S.; Buchwald, S. L. Angew. Chem. Int. Ed. 2018, DOI: https://doi.org/10.1002/anie.201803026.
- 46(a) Bandar, J. S.; Pirnot, M. T.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 14812; (b) Lu, G.; Liu, R. Y.; Yang, Y.; Fang, C.; Lambrecht, D. S.; Buchwald, S. L.; Liu, P. J. Am. Chem. Soc. 2017, 139, 16548.
- 47 Xi, Y.; Butcher, T. W.; Zhang, J.; Hartwig, J. F. Angew. Chem. Int. Ed. 2016, 55, 776.
- 48 Zhu, S.; Niljianskul, N.; Buchwald, S. L. Nat. Chem. 2016, 8, 144.
- 49 Shi, S.-L.; Buchwald, S. L. Nat. Chem. 2015, 7, 38.
- 50 Zhou, Y.; Engl, O. D.; Bandar, J. S.; Chant, E. D.; Buchwald, S. L. Angew. Chem. Int. Ed. 2018, 57, 6672.
- 51For selected reviews, see: (a) Colby, D. A.; Bergman, R. G.; Ellman, J. A. Chem. Rev. 2010, 110, 624; (b) Colby, D. A.; Tsai, A. S.; Bergman, R. G.; Ellman, J. A. Acc. Chem. Res. 2012, 45, 814; (c) Dong, Z.; Ren, Z.; Thompson, S. J.; Xu, Y.; Dong, G. Chem. Rev. 2017, 117, 9333; (d) Newton, C. G.; Wang, S.; Oliveira, C. C.; Cramer, N. Chem. Rev. 2017, 117, 8908.
- 52 Wang, Y.-M.; Bruno, N. C.; Placeres, À. L.; Zhu, S.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 10524.
- 53(a) Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2015, 137, 4666; (b) Yang, Y.; Perry, I. B.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 9787.
- 54 Wang, Y.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 5024.
- 55 Bandar, J. S.; Ascic, E.; Buchwald, S. L. J. Am. Chem. Soc. 2016, 138, 5821.
- 56 Zhou, Y.; Bandar, J. S.; Buchwald, S. L. J. Am. Chem. Soc. 2017, 139, 8126.
- 57 Yang, Y.; Perry, I. B.; Liu, P.; Buchwald, S. L. Science 2016, 353, 144.
- 58(a) Uehling, M. R.; Suess, A. M.; Lalic, G. J. Am. Chem. Soc. 2015, 137, 1424; (b) Suess, A. M.; Uehling, M. R.; Kaminsky, W.; Lalic, G. J. Am. Chem. Soc. 2015, 137, 7747.
- 59 Lee, M.; Nguyen, M.; Brandt, C.; Kaminsky, W.; Lalic, G. Angew. Chem. Int. Ed. 2017, 56, 15703.
- 60 Yu, S.; Sang, H. L.; Ge, S. Angew. Chem. Int. Ed. 2017, 56, 15896.
- 61 Kortman, G. D.; Hull, K. L. ACS Catal. 2017, 7, 6220.
- 62 Han, J. T.; Jang, W. J.; Kim, N.; Yun, J. J. Am. Chem. Soc. 2016, 138, 15146.
- 63 Lee, J.; Torker, S.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2017, 56, 821.
- 64 Mailig, M.; Hazra, A.; Armstrong, M. K.; Lalic, G. J. Am. Chem. Soc. 2017, 139, 6969.
- 65 Fujihara, T.; Yokota, K.; Terao, J.; Tsuji, Y. Chem. Commun. 2017, 53, 7898.
- 66 Xu, G.; Zhao, H.; Fu, B.; Cang, A.; Zhang, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 56, 13130.
- 67 Fujihara, T.; Xu, T.; Kazuhiko, S.; Terao, J.; Tsuji, Y. Angew. Chem. Int. Ed. 2011, 50, 523.
- 68 Tani, Y.; Kuga, K.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Commun. 2015, 51, 13020.
- 69 Gui, Y.-Y.; Hu, N.; Chen, X.-W.; Liao, L.-L.; Ju, T.; Ye, J.-H.; Zhang, Z.; Li, J.; Yu, D.-G. J. Am. Chem. Soc. 2017, 139, 17011.
- 70 Cheng, L.-J.; Mankad, N. P. J. Am. Chem. Soc. 2017, 139, 10200.
- 71For selected reviews, see: (a) Plueddemann, E. Silane Coupling Agents, Plenum Press, New York, 2nd End, 1991;
(b) Hill, R. M. Silicone Surfactants, CRC Press, New York, 1999;
(c) Renner, H.; Schlamp, G.; Kleinwächter, I.; Drost, E.; Lüschow, H. M.; Tews, P.; Panster, P.; Diehl, M.; Lang, J.; Kreuzer, T.; Knödler, A.; Starz, K. A.; Dermann, K.; Rothaut, J.; Drieselman, R. Platinum Group Metals and Compounds, Ullmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2001;
(d) Marciniec, B. Hydrosilylation: A Comprehensive Review on Recent Advances, Springer, Heidelberg, 2009.
10.1007/978-1-4020-8172-9 Google Scholar
- 72 Troegel, D.; Stohrer, J. Coord. Chem. Rev. 2011, 255, 1440.
- 73For selected reviews, see: (a) Peng, J.; Bai, Y.; Li, J.; Lai, G. Curr. Org. Chem. 2011, 15, 2802; (b) Sun, J.; Deng, L. ACS Catal. 2016, 6, 290; (c) Du, X.; Huang, Z. ACS Catal. 2017, 7, 1227.
- 74 Gribble, M. W.; Pirnot, M. T. Jr.; Bandar, J. S.; Liu, R. Y.; Buchwald, S. L. J. Am. Chem. Soc. 2017, 139, 2192.
- 75For selected reviews, see: (a) De Meijer, A.; Diederich, F. Metal-catalyzed Cross-coupling Reactions, Wiley-VCH Verlag GmbH & Co. KGaA, 2004, Vols. 1 & 2; (b) Schlosser, M. Organometallics in Synthesis, Third Manual, John Wiley & Sons, Inc., 2013; (c) Nicolaou, K. C.; Bulger, P. G.; Sarlah, D. Angew. Chem. Int. Ed. 2005, 44, 4442.
- 76For hydrozirconiumnation mediated process, see: Hart, D. W.; Blackburn, T. F.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 679.
- 77For hydrotinnation mediated process, see: (a) Chen, S.-M. L.; Schaub, R. E.; Grudzinskas, C. V. J. Org. Chem. 1978, 43, 3450; (b) Zhang, H. X.; Guibe, F.; Balavoine, G. J. Org. Chem. 1990, 55, 1857.
- 78For hydroboronation mediated process, see: Brown, H.; Hamaoka, T.; Ravindran, N.; Subrahmanyam, C.; Somayaji, V.; Bhat, N. G. J. Org. Chem. 1989, 54, 6075.
- 79For hydroalumination mediated process, see: Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961.
- 80 Uehling, M. R.; Rucker, R. P.; Lalic, G. J. Am. Chem. Soc. 2014, 136, 8799.
- 81Wang and co-workers reported a DFT mechanistic study on the copper-hydride catalyzed hydrobromination of alkynes, see: Deng , X.; Dang, Y.; Wang, Z.-X.; Wang, X. Organometallic 2016, 15, 1923.
- 82(a) Takahashi, K.; Ishiyama, T.; Miyaura, N. Chem. Lett. 2000, 982; (b) Takahashi, K.; Ishiyama, T.; Miyaura, N. J. Organomet. Chem. 2001, 625, 47.
- 83Hosomi et al. developed a copper-catalyzed hydroboration of α,β-enone with B2pin2 simultaneously, see: Ito, H.; Yamanaka, H.; Tateiwa, J.; Hosomi, A. Tetrahedron Lett. 2000, 41, 6821.
- 84 Laitar, D. S.; Müller, P.; Sadighi, J. P. J. Am. Chem. Soc. 2005, 127, 17196.
- 85 Laitar, D. S.; Tsui, E. Y.; Sadighi, J. P. Organometallics 2006, 25, 2405.
- 86 Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 3160.
- 87 Corberan, R.; Mszar, N. W.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2011, 50, 7079.
- 88More recently, Meng et al. described a Cu-B catalyzed enantioselective hydroboration of 1,1-disubstituted aryl alkenes with a chiral phosphine ligand (13), see: Wen, L.; Cheng, F.; Li, H.; Zhang, S.; Hong, X.; Meng, F. Asian J. Org. Chem. 2018, 7, 103.
- 89 Meng, F.; Jang, H.; Hoveyda, A. H. Chem. Eur. J. 2013, 19, 3204.
- 90 Kubota, K.; Yamamoto, E.; Ito, H. Adv. Synth. Catal. 2013, 355, 3527.
- 91 Parra, A.; Amenós, L.; Guisán-Ceinos, M.; López, A.; Ruano, J. L. G.; Tortosa, M. J. Am. Chem. Soc. 2014, 136, 15833.
- 92 Zhang, Z.; He, X.; Zhang, R.; Zhang, G.; Xu, G.; Zhang, Q.; Xiong, T.; Zhang, Q. Org. Lett. 2017, 19, 3067.
- 93 Kubota, K.; Yamamoto, E.; Ito, H. J. Am. Chem. Soc. 2013, 135, 2635.
- 94 Iwamoto, H.; Kubota, K.; Ito, H. Chem. Commun. 2016, 52, 5916.
- 95 Kerchner, H. A.; Montgomery, J. Org. Lett. 2016, 18, 5760.
- 96 Cai, Y.; Yang, X.-T.; Zhang, S.-Q.; Li, F.; Li, Y.-Q.; Ruan, L.-X.; Hong, X.; Shi, S.-L. Angew. Int. Chem. Ed. 2018, 57, 1376.
- 97(a) Lee, Y.; Jang, H.; Hoveyda, A. H. J. Am. Chem. Soc. 2009, 131, 18234; (b) Jang, H.; Zhugralin, A. R.; Lee, Y.; Hoveyda, A. H. J. Am. Chem. Soc. 2011, 133, 7859.
- 98 Moure, A. L.; Mauleón, P.; Arrayás, R. G.; Carretero, J. G. Org. Lett. 2013, 15, 2054.
- 99 Yoshida, H.; Takemotoa, Y.; Takaki, K. Chem. Commun. 2014, 50, 8299.
- 100 Kim, H. R.; Jung, G.; Yoo, K.; Jang, K.; Lee, E. S.; Yun, J.; Son, S. U. Chem. Commun. 2010, 46, 758.
- 101 Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943.
- 102 Moon, J. H.; Jung, H.-Y.; Lee, Y. J.; Lee, S. W.; Yun, J.; Lee, J. Y. Organometallics 2015, 34, 2151.
- 103 Yoshida, H.; Takemoto, Y.; Takaki, K. Asian J. Org. Chem. 2014, 3, 1204.
- 104 Xuan, Q.-Q.; Wei, Y.-H.; Song, Q.-L. Chin. Chem. Lett. 2017, 28, 1163.
- 105 Yuan, W.; Ma, S. Org. Biomol. Chem. 2012, 10, 7266.
- 106 Moure, A. L.; Arrayás, R. G.; Cárdenas, D. J.; Alonso, I.; Carretero, J. C. J. Am. Chem. Soc. 2012, 134, 7219.
- 107 Park, J. K.; Ondrusek, B. A.; McQuade, D. T. Org. Lett. 2012, 14, 4790.
- 108 Jung, H.-Y.; Yun, J. Org. Lett. 2012, 14, 2606.
- 109 Sasaki, Y.; Zhong, C.; Sawamura, M.; Ito, H. J. Am. Chem. Soc. 2010, 132, 1226.
- 110 Yuan, W.; Ma, S. Adv. Synth. Catal. 2012, 354, 1867.
- 111 Song, L.; Yuan, W.; Ma, S. Org. Chem. Front. 2017, 4, 1261.
- 112(a) Jung, B.; Hoveyda, A. H. J. Am. Chem. Soc. 2012, 134, 1490; (b) Meng, F.; Jung, B.; Haeffner, F.; Hoveyda, A. H. Org. Lett. 2013, 15, 1414.
- 113 Semba, K.; Shinomiya, M.; Fujihara, T.; Terao, J.; Tsuji, Y. Chem. Eur. J. 2013, 19, 7125.
- 114 Jang, H.; Jung, B.; Hoveyda, A. H. Org. Lett. 2014, 16, 4658.
- 115 Zhao, W.; Montgomery, J. J. Am. Chem. Soc. 2016, 138, 9763.
- 116 Sasaki, Y.; Hotita, Y.; Zhong, C.; Sawamura, M.; Ito, H. Angew. Chem. Int. Ed. 2011, 50, 2778.
- 117 Li, D.; Kim, Y. E.; Yun, J. Org. Lett. 2015, 17, 860.
- 118 Wang, P.; Yeo, X.-L.; Loh, T.-P. J. Am. Chem. Soc. 2011, 133, 1254.
- 119(a) Lee, K.-S.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898; (b) Vyas, D. J.; Oestreich, M. Angew. Chem. Int. Ed. 2010, 49, 8513; (c) Tobisu, M.; Fujihara, H.; Koh, K.; Chatani, N. J. Org. Chem. 2010, 75, 4841.
- 120 Zhou, H.; Wang, Y.-B. ChemCatChem. 2014, 6, 2512.
- 121 Hazra, C. K.; Fopp, C.; Oestreich, M. Chem. Asian J. 2014, 9, 3005.
- 122 Xuan, Q.-Q.; Ren, C.-L.; Liu, L.; Wang, D.; Li, C.-J. Org. Biomol. Chem. 2015, 13, 5871.
- 123 García-Rubia, A.; Romero-Revilla, J. A.; Mauleón, P.; Arrayás, R. G.; Carretero, J. C. J. Am. Chem. Soc. 2015, 137, 6857.
- 124 Rae, J.; Hu, Y. C.; Procter, D. J. Chem. Eur. J. 2014, 20, 13143.
- 125For selected reviews, see: (a) Tamaru, Y. Modern Organonickel Chemistry, Wiley-VCH, 2005; (b) Wilke, G. Angew. Chem. Int. Ed. Engl. 1988, 27, 185; (c) Keim, W. 1990, 29, 235; (d) Tasker, S. Z.; Standley, E. A.; Jamison, T. F. Nature 2014, 509, 299.
- 126 Kabalka, G. W.; Narayana, C.; Reddy, N. K. Syn. Commun. 1994, 24, 1019.
- 127 Pereira, S.; Srebnik, M. Tetrahedron Lett. 1996, 37, 3283.
- 128 Ely, R. J.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 2534.
- 129 Ely, R. J.; Yu, Z.; Morken, J. P. Tetrahedron Lett. 2015, 56, 3402.
- 130 Touney, E. E.; Hoveln, R. V.; Buttke, C. T.; Freidberg, M. D.; Guzei, I. A.; Schomaker, J. M. Organometallics 2016, 35, 3436.
- 131 Li, J.-F.; Wei, Z.-Z.; Wang, Y.-Q.; Ye, M. Green. Chem. 2017, 19, 4498.
- 132 Li, L.; Gong, T.; Xiao, B.; Fu, Y. Nat. Commun. 2017, 8, 345.
- 133For selected reviews, see: (a) Eisch, J. J. In Comprehensive Organic Synthesis, Vol. 8, Eds.: B. M. Trost; I. Fleming; S. L. Schreiber, Pergamon, Oxford, 1991, pp. 733—761; (b) Dzhemilev, U. M.; Ibragimov, A. G. in Modern Reduction Methods, Eds.: Andersson, P. G.; Munslow, I. J., Wiley-VCH, Weinheim, Germany, 2008, pp. 447—489; (c) Negishi, E.-i.; Tan, Z. in Metallocenes in Regio- and Stereoselective Synthesis, Vol. 8, Springer, Berlin, 2005, pp. 139—176; (d) Dzhemilev, U. M.; Ibragimov, A. G. Russ. Chem. Rev. 2000, 69, 121.
- 134 Gao, F.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 10961.
- 135 Yamamoto, K.; Hayashi, T.; Uramoto, Y.; Ito, R.; Kumada, M. J. Organomet. Chem. 1976, 118, 331.
- 136 Chaulagain, M. R.; Mahandru, G. M.; Montgomery, J. Tetrahedron 2006, 62, 7560.
- 137 Miller, Z. D.; Dorel, R.; Montgomery, J. Angew. Chem. Int. Ed. 2015, 54, 9088.
- 138 Takachi, M.; Chatani, N. Org. Lett. 2010, 12, 5132.
- 139 Buslov, I.; Becouse, J.; Mazza, S.; Montandon-Clerc, M.; Hu, X. Angew. Chem. Int. Ed. 2015, 54, 14523.
- 140 Buslov, I.; Song, F.; Hu, X. Angew. Chem. Int. Ed. 2016, 55, 12295.
- 141 Pappas, I.; Treacy, S.; Chirik, P. J. ACS Catal. 2016, 6, 4105.
- 142 Williams, C. M.; Johnson, J. B.; Rovis, T. J. Am. Chem. Soc. 2008, 130, 14936.
- 143 Li, S.; Yuan, W.; Ma, S. Angew. Chem. Int. Ed. 2011, 50, 2578.
- 144For selected reviews, see: (a) RajanBabu, T. V. ; Nomura, N.; Jin, J.; Radetich, B.; Park, H.; Nandi, M. Chem. Eur. J. 1999, 5, 1963;
(b) Gooßen, L. J. Angew. Chem. Int. Ed. 2002, 41, 3775;
10.1002/1521-3773(20021018)41:20<3775::AID-ANIE3775>3.0.CO;2-2 CAS PubMed Web of Science® Google Scholar(c) RajanBabu, T. V. Chem. Rev. 2003, 103, 2845; (d) RajanBabu, T. V. Synlett 2009, 6, 853; (e) Saini, V.; Stokes, B. J.; Sigman, M. S. Angew. Chem. Int. Ed. 2013, 52, 11206; (f) Ceder, R. M.; Grabulosa, A.; Muller, G.; Rocamora, M. Catal. Sci. Technol. 2013, 3, 1446.
- 145(a) Bogdanocic, B.; Henc, B.; Meister, B.; Pauling, H.; Wilke, G. Angew. Chem. Int. Ed. Engl. 1972, 11, 1023;
10.1002/anie.197210231 Google Scholar(b) Wilke, G.; Bogdanovic, B. Angew. Chem. Int. Ed. Engl. 1973, 12, 954.
- 146 Nomura, N.; Jin, J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 459.
- 147For selected examples, see: (a) Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899; (b) Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 2002, 124, 734; (c) Kumareswaran, R.; Nandi, N.; RajanBabu, T. V. Org. Lett. 2003, 5, 4345; (d) Zhang, A.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128, 54; (e) Zhang A.; RajanBabu, T. V. J. Am. Chem. Soc. 2006, 128, 5620; (f) Smith, C. R.; RajanBabu, T. V. J. Org. Chem. 2009, 74, 3066; (g) Smith, C. R.; Lim, H. J.; Zhang, A.; RajanBabu, T. V. Synthesis 2009, 2089; (h) Liu, W.; RajanBabu, T. V. J. Org. Chem. 2010, 75, 7636; (i) Biswas, S.; Zhang, A.; Raya, B.; RajanBabu, T. V. Adv. Synth. Catal. 2014, 356, 2281.
- 148 Wegner, A.; Leitner, W. Chem. Commun. 1999, 1583.
- 149For selected examples, see: (a) Franciò, G.; Faraone, F.; Leitner, W. J. Am. Chem. Soc. 2002, 134, 736; (b) Diez-Holz, C. J.; Böing, C.; Franciò, G.; Hölscher, M.; Leitner, W. Eur. J. Org. Chem. 2007, 2995; (c) Lassauque, N.; Franciò, G.; Leitnera, W. Adv. Synth. Catal. 2009, 351, 3133; (d) Schmitkamp, M.; Leitner, W.; Francio, G. Catal. Sci. Technol. 2013, 3, 589.
- 150Leitner et al. also found the allyl-nickel complexes to be efficient for cycloisomerisation of 1,6-dienes, see: (a) Böing, C.; Franciò, G.; Leitner, W. Adv. Synth. Catal. 2005, 347, 1537; (b) Böing, C.; Franciò, G.; Leitner, W. Chem. Commun. 2005, 1456; (c) Böing, C.; Hahne, J.; Franciò, G.; Leitnera, W. Adv. Synth. Catal. 2008, 350, 1073.
- 151(a) Shi, W.-J.; Zhang, Q.; Xie, J.-H.; Zhu, S.-F.; Hou, G.-H.; Zhou, Q.-L. J. Am. Chem. Soc. 2006, 128, 2706; (b) Zhang, Q.; Zhu, S.-F.; Qiao, X.-C.; Wang, L.-X.; Zhou, X.-L. Adv. Synth. Catal. 2008, 350, 1507.
- 152(a) Ho, C.-Y.; He, L. Angew. Chem. Int. Ed. 2010, 49, 9182; (b) He, L.; Ho, C.-Y. Synlett 2014, 25, 2738; (c) Hong, X.; Wang, J.; Yang, Y.-F.; He, L.; Ho, C.-Y.; Houk, K. N. ACS Catal. 2015, 5, 5545.
- 153Vinyl ethers were also tested as substrates in Ho's group, see: (a) He, L.; Ho, C.-Y. Synlett 2014, 25, 2738; (b) Chen, W.; Li, Y.; Chen, Y.; Ho, C.-Y. Angew. Chem. Int. Ed. 2018, 57, 2677.
- 154 Ho, C.-Y.; Chan, C.-W.; He, L. Angew. Chem. Int. Ed. 2015, 54, 4512.
- 155 Ho, C.-Y.; He, L. Chem. Commun. 2012, 48, 1481.
- 156 Ho, C.-Y.; He, L. J. Org. Chem. 2014, 79, 11873.
- 157(a) Lian, X.; Chen, W.; Dang, L.; Li, Y.; Ho, C.-Y. Angew. Chem. Int. Ed. 2017, 56, 9048; (b) Gao, Y.; Houk, K. N.; Ho, C.-Y.; Hong, X. Org. Biomol. Chem. 2017, 15, 7131.
- 158 Li, K.; Li, M.-L.; Zhang, Q.; Zhu, S.-F.; Zhou, Q.-L. J. Am. Chem. Soc. 2018, 140, 7458.
- 159 Robbins, D. W.; Hartwig, J. F. Science 2011, 333, 1423.
- 160 Lu, X.; Xiao, B.; Zhang, Z.; Gong, T.; Su, W.; Yi, J.; Fu, Y.; Liu, L. Nat. Commun. 2016, 7, 11129.
- 161 Xiao, L.-J.; Cheng, L.; Feng, W.-M.; Li, M.-L.; Xie, J.-H.; Zhou, Q.-L. Angew. Chem. Int. Ed. 2018, 57, 461.
- 162 He, Y.; Cai, Y.; Zhu, S. J. Am. Chem. Soc. 2017, 139, 1061.
- 163 Zhou, F.; Zhu, J.; Zhang, Y.; Zhu, S. Angew. Chem. Int. Ed. 2018, 57, 4058.
- 164 Xiao, J.; He, Y.; Ye, F.; Zhu, S. Chem 2018, Doi.org/10.1016/j.chempr.2018.04.008.
- 165(a) Clement, N. D.; Cavell, K. J. Angew. Chem. Int. Ed. 2004, 43, 3845; (b) Normand, A. T.; Yen, S. K.; Huynh, H. V.; Andy Hor, T. S.; Cavell, K. J. Organometallics 2008, 27, 3153.
- 166 Normand, A. T.; Hawkes, K. J.; Clement, N. D.; Cavell, K. J.; Yates, B. F. Organometallics 2007, 26, 5352.
- 167 Nakao, Y.; Idei, H.; Kanyiva, K. S.; Hiyama, T. J. Am. Chem. Soc. 2009, 131, 15996.
- 168 Tamura, R.; Yamada, Y.; Nakao, Y.; Hiyama, T. Angew. Chem. Int. Ed. 2012, 52, 5679.
- 169 Okumura, S.; Tang, S.; Saito, T.; Semba, K.; Sakaki, S.; Nakao, Y. J. Am. Chem. Soc. 2016, 138, 14699.
- 170 Donets, P. A.; Cramer, N. J. Am. Chem. Soc. 2013, 135, 11772.
- 171 Donets, P. A.; Cramer, N. Angew. Chem. Int. Ed. 2015, 54, 633.
- 172 Diesel, J.; Finogenova, A. M.; Cramer, N. J. Am. Chem. Soc. 2018, 140, 4489.
- 173 Wang, Y.-X.; Qi, S.-L.; Luan, Y.-X.; Han, X.-W.; Wang, S.; Chen, H.; Ye, M. J. Am. Chem. Soc. 2018, 140, 5360.
- 174 Wang, X.; Nakajima, M.; Martin, R. J. Am. Chem. Soc. 2015, 137, 8924.
- 175 Gaydou, M.; Moragas, T.; Juliá-Hernández, F.; Martin, R. J. Am. Chem. Soc. 2017, 139, 12161.
- 176 Hou, J.; Yuan, M.-L.; Xie, J.-H.; Zhou, Q.-L. Green Chem. 2016, 18, 2981.
- 177 Fu, M.-C.; Shang, R.; Cheng, W.-M.; Fu, Y. ACS Catal. 2016, 6, 2501.
- 178For selected reviews, see: (a) Pollak, P.; Romeder, G.; Hagedorn, F.; Gelbke, H. “Nitriles”, in Ullman's Encyclopedia of Industrial Chemistry, 5th ed., Vol. A17, Wiley-VCH, Weinheim, Germany, 1985, p. 363; (b) Larcok, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparations, 2nd ed., VCH,New York, U.S.A., 1999.
- 179For reviews, see: (a) Rajanbabu, T. V. Hydrocyanation of Alkenes and Alkynes. Organic Reactions. Volume 75, Chapter 1, 2011, pp. 1—74; (b) Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem. Int. Ed. 2004, 43, 3368.
- 180 Fang, X.; Yu, P.; Morandi, B. Science 2016, 351, 832.
- 181 Zhang, X.; Xie, X.; Liu, Y. J. Am. Chem. Soc. 2018, 140, 7385.
- 182 Campbell, K. N.; O'Connor, M. J. J. Am. Chem. Soc. 1939, 61, 2897.
- 183(a) Angulo, I. M.; Kluwer, A. M.; Bouwman, E. Chem. Commun. 1998, 2689; (b) Angulo, I. M.; Bouwman, E. J. Mol. Catal. A: Chem. 2001, 175, 65; (c) Angulo, I. M.; Bouwman, E.; van Gorkum, R.; Lok, S. M.; Lutz, M.; Spek, A. L. J. Mol. Catal. A: Chem. 2003, 202, 97.
- 184 Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. Eur. J. Inorg. Chem. 2012, 4898.
- 185(a) Harman, W. H.; Peters, J. C. J. Am. Chem. Soc. 2012, 134, 5080; (b) Lin, T.-P.; Peters, J. C. J. Am. Chem. Soc. 2014, 136, 13672.
- 186 Cammarota, R. C.; Lu, C. C. J. Am. Chem. Soc. 2015, 137, 12486.
- 187 Wang, Y.; Kostenko, A.; Yao, S.; Driess, M. J. Am. Chem. Soc. 2017, 139, 13499.
- 188 Léonard, N. G.; Chirik, P. J. ACS Catal. 2018, 8, 342.
- 189 Camacho-Bunquin, J.; Ferguson, M. J.; Stryker, J. M. J. Am. Chem. Soc. 2013, 135, 5537.
- 190(a) Roelen, O. German Patent DE 849 548, 1938/1952; (b) Roelen, O. U.S. Patent 2,327,066, 1939/1943; (c) Roelen, O. Angew. Chem. 1948, 60, 62.
- 191(a) Welker, M. E. Curr. Org. Chem. 2001, 5, 785; (b) Scheuermann née Taylor, C. J.; Ward, B. D. New J. Chem. 2008, 32, 1850; (c) Hess, W.; Treutwein, J.; Hilt, G. Synthesis 2008, 3537; (d) Pellissier, H.; Clavier, H. Chem. Rev. 2014, 114, 2775.
- 192 Obligacion, J. V.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 19107.
- 193 Zhang, L.; Zuo, Z.; Leng, X.; Huang, Z. Angew. Chem. Int. Ed. 2014, 53, 2696.
- 194 Zhang, T.; Manna, K.; Lin, W. J. Am. Chem. Soc. 2016, 138, 3241.
- 195 Ibrahim, A. D.; Entsminger, S. W.; Fout, A. R. ACS Catal. 2017, 7, 3730.
- 196 Palmer, W. N.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2015, 5, 622.
- 197 Reilly, S. W.; Webster, C. E.; Hollis, T. K.; Valle, H. U. Dalton Trans. 2016, 45, 2823.
- 198 Peng, J.; Docherty, J. H.; Dominey, A. P.; Thomas, S. P. Chem. Commun. 2017, 4726.
- 199 Docherty, J. H.; Peng, J.; Dominey, A. P.; Thomas, S. P. Nat. Chem. 2017, 9, 595.
- 200 Zhang, G.; Wu, J.; Wang, M.; Zeng, H.; Cheng, J.; Neary, M. C.; Zheng, S. Eur. J. Org. Chem. 2017, 5814.
- 201The other selected reports on Co-catalyzed Isomerization−Hydroboration of internal alkenes, see: (a) Ruddy, A. J.; Sydora, O. L.; Small, B. L.; Stradiotto, M.; Turculet, L. Chem. Eur. J. 2014, 20, 13918; (b) Ogawa, T.; Ruddy, A. J.; Sydora, O. L.; Stradiotto, M.; Turculet, L. Organometallics 2017, 36, 417.
- 202 Scheuermann, M. L.; Johnson, E. J.; Chirik, P. J. Org. Lett. 2015, 17, 2716.
- 203 Zhang, L.; Zuo, Z.; Wan, X. Huang, Z. J. Am. Chem. Soc. 2014, 136, 15501.
- 204(a) Chen, J.; Xi, T.; Ren, X.; Cheng, B.; Guo, J.; Lu, Z. Org. Chem. Front. 2014, 1, 1306; (b) Xi, T.; Mei, Y.; Lu, Z. Org. Lett. 2015, 17, 5939; (c) Chen, J.; Xi, T.; Lu, Z. Org. Chem. Front. 2018, 5, 247.
- 205 Zhang, H.; Lu, Z. ACS Catal. 2016, 6, 6596.
- 206 Zhang, L.; Huang, Z. J. Am. Chem. Soc. 2015, 137, 15600.
- 207 Wen, H.; Zhang, L.; Zhu, S.; Liu, G.; Huang, Z. ACS Catal. 2017, 7, 6419.
- 208 Teo, W. J.; Ge, S. Angew. Chem. Int. Ed. 2018, 57, 1654.
- 209 Obligacion, J. V.; Neely, J. M.; Yazdani, A. N.; Pappas, I.; Chirik, P. J. J. Am. Chem. Soc. 2015, 137, 5855.
- 210 Krautwald, S.; Bezdek, M. J.; Chirik, P. J. J. Am. Chem. Soc. 2017, 139, 3868.
- 211 Zuo, Z.; Huang, Z. Org. Chem. Front. 2016, 3, 434.
- 212 Guo, J.; Cheng, B.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
- 213 Xi, T.; Lu, Z. ACS Catal. 2017, 7, 1181.
- 214 Yu, S.; Wu, C.; Ge, S. J. Am. Chem. Soc. 2017, 139, 6526.
- 215(a) Harrod, J. F.; Chalk, A. J. J. Am. Chem. Soc. 1965, 87, 1133; (b) Chalk, A. J.; Harrod, J. F. J. Am. Chem. Soc. 1967, 89, 1640.
- 216For selected examples, see: (a) Cornish, A. J.; Lappert, M. F.; Nile, T. A. J. Organomet. Chem. 1977, 136, 73; (b) Magomedov, G. K. I.; Andrianov, K. A.; Shkolnik, O. V.; Izmailov, B. A.; Kalinin, V. N. J. Organomet. Chem. 1978, 149, 29; (c) Takeshita, K.; Seki, Y.; Kawamoto, K.; Murai, S.; Sonoda, N. J. Org. Chem. 1987, 52, 4864; (d) Stranix, B. R.; Liu, H. Q.; Darling, G. D. J. Org. Chem. 1997, 62, 6183; (e) Isobe, M.; Nishizawa, R.; Nishikawa, T.; Yoza, K. Tetrahedron Lett. 1999, 40, 6927; (f) Huang, K.-H.; Isobe, M. Eur. J. Org. Chem. 2014, 4733.
- 217(a) Archer, N. J.; Haszeldine, R. N.; Parish, R. V. J. Chem. Soc. D 1971, 524; (b) Archer, N. J.; Haszeldine, R. N.; Parish, R. V. J. Chem. Soc., Dalton Trans. 1979, 695.
- 218 Brookhart, M.; Grant, B. E. J. Am. Chem. Soc. 1993, 115, 2151.
- 219 Mo, Z.; Liu, Y.; Deng, L. Angew. Chem. Int. Ed. 2013, 52, 10845.
- 220 Liu, Y.; Deng, L. J. Am. Chem. Soc. 2017, 139, 1798.
- 221 Chen, C.; Hecht, M. B.; Kavara, A.; Brennessel, W. W.; Mercado, B. Q.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2015, 137, 13244.
- 222 Schuster, C. H.; Diao, T.; Pappas, I.; Chirik, P. J. ACS Catal. 2016, 6, 2632.
- 223 Ibrahim, A. D.; Entsminger, S. W.; Zhu, L.; Fout, A. R. ACS Catal. 2016, 6, 3589.
- 224 Chu, W.-Y.; Gilbert-Wilson, R.; Rauchfuss, T. B. Organometallics 2016, 35, 2900.
- 225 Gorczyński, A.; Zaranek, M.; Witomska, S.; Bocian, A.; Stefankiewicz, A. R.; Kubicki, M.; Patroniak, V.; Pawluć, P. Catal. Commun. 2016, 78, 71.
- 226 Lee, K. L. Angew. Chem. Int. Ed. 2017, 56, 3665.
- 227 Noda, D.; Tahara, A.; Sunada, Y.; Nagashima, H. J. Am. Chem. Soc. 2016, 138, 2480.
- 228 Du, X.; Zhang, Y.; Peng, D.; Huang, Z. Angew. Chem. Int. Ed. 2016, 55, 6671.
- 229 Wang, C.; Teo, W. J.; Ge, S. ACS Catal. 2017, 7, 855.
- 230 Cheng, B.; Lu, P.; Zhang, H.; Cheng, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 9439.
- 231 Atienza, C. C. H.; Diao, T.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Boyer, J. L.; Roy, A. K.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 12108.
- 232 Yong, L.; Kirleis, K.; Butenschön, H. Adv. Syn. Catal. 2006, 348, 833.
- 233 Rivera-Hernández, A.; Fallon, B. J.; Ventre, S.; Simon, C.; Tremblay, M.-H.; Gontard, G.; Derat, E.; Amatore, M.; Aubert, C.; Petit, M. Org. Lett. 2016, 18, 4242.
- 234 Mo, Z.; Xiao, J.; Gao, Y.; Deng, L. J. Am. Chem. Soc. 2014, 136, 17414.
- 235 More recently, Ge and co-workers performed the Co-catalyzed (E)-selective anti-Markovnikov hydrosilylation of terminal alkynes with commercially available phosphine ligand (DPEphos, 10), see: Wu, C.; Teo, W. J.; Ge, S. ACS Catal. 2018, 8, 5896.
- 236 Guo, J.; Lu, Z. Angew. Chem. Int. Ed. 2016, 55, 10835.
- 237 Zuo, Z.; Yang, J.; Huang, Z. Angew. Chem. Int. Ed. 2016, 55, 10839.
- 238 Teo, W. J.; Wang, C.; Tan, Y. W.; Ge, S. Angew. Chem. Int. Ed. 2017, 56, 4328.
- 239 Du, X.; Hou, W.; Zhang, Y.; Huang, Z. Org. Chem. Front. 2017, 4, 1517.
- 240 Wen, H.; Wan, X.; Huang, Z. Angew. Chem. Int. Ed. 2018, 57, 6319.
- 241 Guo, J.; Shen, X.; Lu, Z. Angew. Chem. Int. Ed. 2017, 56, 615.
- 242 Raya, B.; Jing, S.; Balasanthiran, V.; RajanBabu, T. V. ACS Catal. 2017, 7, 2275.
- 243 Sang, H. L.; Yu, S.; Ge, S. Chem. Sci. 2018, 9, 973.
- 244 Yang, Z.; Peng, D.; Du, X.; Huang, Z.; Ma, S. Org. Chem. Front. 2017, 4, 1829.
- 245 Wang, C.; Teo, W. J.; Ge, S. Nat. Commun. 2017, 8, 2258.
- 246 Xi, T.; Lu, Z. J. Org. Chem. 2016, 81, 8858.
- 247(a) Small, B. L.; Brookhart, M.; Bennett, A. M. A. J. Am. Chem. Soc. 1998, 120, 4049; (b) Small, B. L.; Brookhart, M. J. Am. Chem. Soc. 1998, 120, 7143.
- 248(a) Britovsek, G. J. P.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; McTavish, S. J.; Solan, G. A.; White, A. J. P.; Williams, D. J. Chem. Commun. 1998, 849; (b) Britovsek, G. J. P.; Bruce, M.; Gibson, V. C.; Kimberley, B. S.; Maddox, P. J.; Mastroianni, S.; McTavish, S. J.; Redshaw, C.; Solan, G. A.; Strömberg, S.; White, A. J. P.; Williams, D. J. J. Am. Chem. Soc. 1999, 121, 8728.
- 249(a) Gibson, V. C.; Tellmann, K. P.; Humphries, M. J.; Wass, D. F. Chem. Commun. 2002, 2316; (b) Tellmann, K. P.; Humphries, M. J.; Rzepa, H. S.; Gibson, V. C. Organometallics 2004, 23, 5503; (c) Tellmann, K. P.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Organometallics 2005, 24, 280.
- 250For selected examples, see: (a) Hilt, G.; du Mesnil, F.-X.; Lüers, S. Angew. Chem. Int. Ed. 2001, 40, 387; (b) Hilt, G.; Danz, M.; Treutwein, J. Org. Lett. 2009, 11, 3322; (c) Hilt, G.; Treutwein, J. Chem. Commun. 2009, 1395; (d) Arndt, M.; Reinhold, A.; Hilt, G. J. Org. Chem. 2010, 75, 5203; (e) Arndt, M.; Dindaroglu, M.; Schmalz, H.-G.; Hilt, G. Org. Lett. 2011, 13, 6236; (f) Bohn, M. A.; Schmidt, A.; Hilt, G.; Dindaroğlu, M.; Schmalz, H.-G. Angew. Chem. Int. Ed. 2011, 50, 9689.
- 251(a) Grutters, M. M. P.; Müller, C.; Vogt, D. J. Am. Chem. Soc. 2006, 128, 7414; (b) Grutters, M. M. P.; van der Vlugt, J. I.; Pei, Y.; Mills, A. M.; Lutz, M.; Spek, A. L.; Müller, C.; Moberg, C.; Vogt, D. Adv. Synth. Catal. 2009, 351, 2199.
- 252 Movahhed, S.; Westphal, J.; Dindaroğlu, M.; Falk, A.; Schmalz, H.-G. Chem. Eur. J. 2016, 22, 7381.
- 253 Sharma, R. K.; RajanBabu, T. V. J. Am. Chem. Soc. 2010, 132, 3295.
- 254 Page, J. P.; RajanBabu, T. V. J. Am. Chem. Soc. 2012, 134, 6556.
- 255 Yang, J.; Yoshikai, N. J. Am. Chem. Soc. 2014, 136, 16748.
- 256For selected examples, see: (a) Ohgo, Y.; Takeuchi, S.; Natori, Y.; Yoshimura, J. Bull. Chem. Soc. Jpn. 1981, 54, 2124; (b) Leutenegger, U.; Madin, A.; Pfaltz, A. Angew. Chem. Int. Ed. Engl. 1989, 28, 60; (c) Corma, A.; Iglesias, M.; del Pino, C.; Sánchez, F. J. Organomet. Chem. 1992, 431, 233.
- 257 Knijnenburg, Q.; Horton, A. D.; van der Heijden, H.; Kooistra, T. M.; Hetterscheid, D. G. H.; Smits, J. M. M.; de Bruin, B.; Budzelaar, P. H. M.; Gal, A. W. J. Mol. Catal. A 2005, 232, 151.
- 258(a) Zhang, G.; Scott, B. L.; Hanson, S. K. Angew. Chem. Int. Ed. 2012, 51, 12102; (b) Zhang, G.; Vasudevan, K. V.; Scott, B. L.; Hanson, S. K. J. Am. Chem. Soc. 2013, 135, 8668.
- 259 Lin, T. P.; Peters, J. C. J. Am. Chem. Soc. 2013, 135, 15310.
- 260 Yu, R. P.; Darmon, J. M.; Milsmann, C.; Margulieux, G. W.; Stieber, S. C. E.; DeBeer, S.; Chirik, P. J. J. Am. Chem. Soc. 2013, 135, 13168.
- 261 Friedfeld, M. R.; Margulieux, G. W.; Schaefer, B. A.; Chirik, P. J. J. Am. Chem. Soc. 2014, 136, 13178.
- 262For mechanistic studies, see: Ma, X.; Lei, M. J. Org. Chem. 2017, 82, 2703.
- 263 Monfette, S.; Turner, Z. R.; Semproni, S. P.; Chirik, P. J. J. Am. Chem. Soc. 2012, 134, 4561.
- 264 For mechanistic studies, see: Hopmann, K. H. Organometallics 2013, 32, 6388.
- 265 Friedfeld, M. R.; Shevlin, M.; Margulieux, G. W.; Campeau, L.-C.; Chirik, P. J. J. Am. Chem. Soc. 2016, 138, 3314.
- 266 Friedfeld, M. R.; Shevlin, M.; Hoyt, J. M.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Science 2013, 342, 1076.
- 267(a) Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Science 2018, 360, 888; (b) Friedfeld, M. R.; Zhong, H.; Ruck, R. T.; Shevlin, M.; Chirik, P. J. Science 2018, 360, 888.
- 268 Chen, J.; Chen, C.; Ji, C.; Lu, Z. Org. Lett. 2016, 18, 1594.
- 269 Fu, S.; Chen, N.-Y.; Liu, X.; Shao, Z.; Luo, S.-P.; Liu, Q. J. Am. Chem. Soc. 2016, 138, 8588.
- 270 Raya, B.; Biswas, S.; RajanBabu, T. V. ACS Catal. 2016, 6, 6318
- 271 Chen, C.; Dugan, T. R.; Brennessel, W. W.; Weix, D. J.; Holland, P. L. J. Am. Chem. Soc. 2014, 136, 945.
- 272 More recently, Liu and co-workers Liu and Jiao described a Co-catalyzed isomerization of terminal alkenes, selectively affording internal alkenes as the products, see: Liu, X.; Zhang, W.; Wang, Y.; Zhang, Z.-X.; Jiao, L.; Liu, Q. J. Am. Chem. Soc. 2018, 140, 6873.
- 273For selected reviews, see: (a) Bauer, E. Iron Catalysis II, Springer International Publishing, Switzerland, 2015; (b) Bolm, C.; Legros, J.; Le Paih, J.; Zani, L. Chem. Rev. 2004, 104, 6217; (c) Enthaler, S.; Junge, K.; Beller, M. Angew. Chem. Int. Ed. 2008, 47, 3317; (d) Correa, A.; Mancheño, O. G.; Bolm, C. Chem. Soc. Rev. 2008, 37, 1108; (e) Bolm, C. Nat. Chem. 2009, 1, 420; (f) Sun, C.-L.; Li, B.-J.; Shi, Z.-J. Chem. Rev. 2011, 111, 1293; (g) Gopalaiah, K. Chem. Rev. 2013, 113, 3248; (h) Greenhalgh, M. D.; Jones, A. S.; Thomas, S. P. ChemCatChem 2015, 7, 190; (i) Bauer, I.; Knölker, H.-J. Chem. Rev. 2015, 115, 3170.
- 274 Wu, J. Y.; Moreau, B.; Ritter, T. J. Am. Chem. Soc. 2009, 131, 12915.
- 275 Cao, Y.; Zhang, Y.; Zhang, L.; Zhang, D.; Leng, X.; Huang, Z. Org. Chem. Front. 2014, 1, 1101
- 276(a) Zhang, L.; Peng, D.; Leng, X.; Huang, Z. Angew. Chem. Int. Ed. 2013, 52, 3676; (b) Zhang, L.; Huang, Z. Synlett 2013, 24, 1745.
- 277 Oblogacion, J. V.; Chirik, P. J. Org. Lett. 2013, 15, 2680.
- 278(a) Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230; (b) MacNair, A. J.; Millet, C. R. P.; Nichol, G. S.; Ironmonger, A.; Thomas, S. P. ACS Catal. 2016, 6, 7217.
- 279 Zheng, J.; Sortais, J.-B.; Darcel, C. ChemCatChem 2014, 6, 763.
- 280 Tseng, K.-N. T.; Kampf, J. W.; Szymczak, N. K. ACS Catal. 2015, 5, 411.
- 281 Espinal-Viguri, M.; Woof, C. R.; Webster, R. L. Chem. Eur. J. 2016, 22, 11605.
- 282 Liu, Y.; Zhou, Y.; Wang, H.; Qu, J. RSC Adv. 2015, 5, 73705.
- 283 Chen, X.; Cheng, Z.; Lu, Z. Org. Lett. 2017, 19, 969.
- 284 Chen, J.; Xi, T.; Lu, Z. Org. Lett. 2014, 16, 6452.
- 285 Chen, C.; Shen, X.; Chen, J.; Hong, X.; Lu, Z. Org. Lett. 2017, 19, 5422.
- 286 Haberberger, M.; Enthaler, S. Chem. Asian J. 2013, 8, 50.
- 287 Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.
- 288 Gorgas, N.; Alves, L. G.; Stöger, B.; Martins, A. M.; Veiros, L. F.; Kirchner, K. J. Am. Chem. Soc. 2017, 139, 8130.
- 289 Cabrera-Lobera, N.; Rodríguez-Salamanca, P.; Nieto-Carmona, J. C.; Buñuel, E.; Cárdenas, D. J. Chem. Eur. J. 2018, 24, 784.
- 290
Silverman, G. S.; Rakita, P. E. Handbook of Grignard Reagents, Marcel Decker, New York, 1996.
10.1201/b16932 Google Scholar
- 291For selected reviews, see: (a) Sato, F. J. Organomet. Chem. 1985, 285, 53; (b) Dzhemilev, U. M.; Ibragimov, A. G. Russ. Chem. Rev. 2005, 74, 807.
- 292(a) Greenhalgh, M. D.; Thomas, S. P. J. Am. Chem. Soc. 2012, 134, 11900; (b) Greenhalgh, M. D.; Thomas, S. P. Synlett 2013, 24, 531; (c) Jones, A. S.; Paliga, J. F.; Greenhalgh, M. D.; Quibell, J. M.; Steven, A.; Thomas, S. P. Org. Lett. 2014, 16, 5964; (d) Greenhalgh, M. D.; Kolodziej, A.; Sinclair, F.; Thomas, S. P. Organometallics 2014, 33, 5811.
- 293For mechanistic studies, see: Ren, Q.; Wu, N.; Cai, Y.; Fang, J. Organometallics 2016, 35, 3932.
- 294 Ilies, L.; Yoshida, T.; Nakamura, E. J. Am. Chem. Soc. 2012, 134, 16951.
- 295 Santhoshkumar, R.; Hong, Y.-C.; Luo, C.-Z.; Wu, Y.-C.; Hung, C.-H.; Hwang, K.-Y.; Tu, A.-P.; Cheng, C.-H. ChemCatChem 2016, 8, 2210.
- 296 Shirakawa, E.; Ikeda, D.; Masui, S.; Yoshida, M.; Hayashi, T. J. Am. Chem.Soc. 2012, 134, 272.
- 297 Nesmeyanov, A. N.; Freidlina, R. K.; Chukovskaya, E. C.; Petrova, R. G.; Belyavsky, A. B. Tetrahedron 1962, 17, 61.
- 298 Bart, S. C.; Lobkovsky, E.; Chirik, P. J. J. Am. Chem. Soc. 2004, 126, 13794.
- 299For reviews, see: (a) Chirik, P. J. Acc. Chem. Res. 2015, 48, 1687; for selected examples, see: (b) Archer, A. M.; Bouwkamp, M. W.; Cortez, M.-P.; Lobkovsky, E.; Chirik, P. J. Organometallics 2006, 25, 4269; (c) Tondreau, A. M.; Atienza, C. C. H.; Darmon, J. M.; Milsmann, C.; Hoyt, H. M.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Boyer, J.; Delis, J. G. P.; Lobkovsky, E.; Chirik, P. J. Organometallic 2012, 31, 4886; (d) Atienza, C. C. H.; Tondreau, A. M.; Weller, K. J.; Lewis, K. M.; Cruse, R. W.; Nye, S. A.; Boyer, J. L.; Delis, J. G. P.; Chirik, P. J. ACS Catal. 2012, 2, 2169.
- 300 Tondreau, A. M.; Atienza, C. C. H.; Weller, K. J.; Nye, S. A.; Lewis, K. M.; Delis, J. G. P.; Chirik, P. J. Science 2012, 335, 567.
- 301(a) Kamata, K.; Suzuki, A.; Nakai, Y.; Nakazawa, H. Organometallics 2012, 31, 3825; (b) Toya, Y.; Hayasaka, K.; Nakazawa, H. Organometallics 2017, 36, 1727.
- 302(a) Peng, D.; Zhang, Y.; Du, X.; Zhang, L.; Leng, X.; Walter, M. D.; Huang, Z. J. Am. Chem. Soc. 2013, 135, 19154; (b) Jia, X.; Huang, Z. Nat. Chem. 2016, 8, 157.
- 303(a) Greenhalgh, M. D.; Frank, D. J.; Thomas, S. P. Adv. Synth. Catal. 2014, 356, 584; (b) Challinor, A. J.; Calin, M.; Nichol, G. S.; Carter, N. B.; Thomas, S. P. Adv. Synth. Catal. 2016, 358, 2404.
- 304(a) Sunada, Y.; Tsutsumi, H.; Shigeta, K.; Yoshida, R.; Hashimoto, T.; Nagashima, H. Dalton Trans. 2013, 42, 16687; (b) Sunada, Y.; Noda, D.; Soejima, H.; Tsutsumi, H.; Nagashima, H. Organometallics 2015, 34, 2896.
- 305 Naumov, R. N.; Itazaki, M.; Kamitani, M.; Nakazawa, H. J. Am. Chem. Soc. 2012, 134, 804.
- 306 Wu, J. Y.; Stanzl, B. N.; Ritter, T. J. Am. Chem. Soc. 2010, 132, 13214.
- 307 Hu, M.-Y.; He, Q.; Fan, S.-J.; Wang, Z.-C.; Liu, L.-Y.; Mu, Y.-J.; Peng, Q.; Zhu, S.-F. Nat. Commun. 2018, 9, 221.
- 308 Belger, C.; Plietker, B. Chem. Commun. 2012, 48, 5419.
- 309(a) Chen, J.; Cheng, B.; Cao, M.; Lu, Z. Angew. Chem. Int. Ed. 2015, 54, 4661; (b) Chen, J.; Cao, M.; Cheng, B.; Lu, Z. Synlett 2015, 26, 2332.
- 310 Cheng, B.; Liu, W.; Lu, Z. J. Am. Chem. Soc. 2018, 140, 5014.
- 311(a) Frankel, E. N.; Emken, E. A.; Peters, H. M.; Davison, V. L.; Butterfield, R. O. J. Org. Chem. 1964, 29, 3292; (b) Frankel, E. N.; Emken, E. A.; Davison, V. L. J. Org. Chem. 1965, 30, 2739.
- 312For the other selected examples, see: (a) Cais, M.; Maoz, N. J. Chem. Soc. A 1971, 1811; (b) Schroeder, M. A.; Wrighton, M. S. J. Am. Chem. Soc. 1976, 98, 551; (c) Miller, M. E.; Grant, E. R. J. Am. Chem. Soc. 1987, 109, 7951.
- 313For selected reviews on iron-catalyzed hydrogenation, see: (a) Morris, R. H. Chem. Soc. Rev. 2009, 38, 2282; (b) Junge, K.; Schröder, K.; Beller, M. Chem. Commun. 2011, 47, 4849; (c) Le Bailly, B. A. F.; Thomas, S. P. RSC Adv. 2011, 1, 1435; (d) Zell, T.; Milstein, D. Acc. Chem. Res. 2015, 48, 1979; (e) Guo, N.; Zhu, S. F. Chin. J. Org. Chem. 2015, 35, 1383.
- 314(a) Bart, S. C.; Hawrelak, E. J.; Lobkovsky, E.; Chirik, P. J. Organometallics 2005, 24, 5518; (b) Trovitch, R. J.; Lobkovsky, E.; Chirik, P. J. Inorg. Chem. 2006, 45, 7252; (c) Trovitch, R. J.; Lobkovsky, E.; Bill, E.; Chirik, P. J. Organometallics 2008, 27, 1470; (d) Hoyt, J. M.; Shevlin, M.; Margulieux, G. W.; Krska, S. W.; Tudge, M. T.; Chirik, P. J. Organometallics 2014, 33, 5781.
- 315 Yu, R. P.; Darmon, J. M.; Hoyt, J. M.; Margulieux, G. W.; Turner, Z. R.; Chirik, P. J. ACS Catal. 2012, 2, 1760.
- 316(a) Daida, E. J.; Peters, J. C. Inorg. Chem. 2004, 43, 7474; (b) Fong, H.; Moret, M.-E.; Lee, Y.; Peters, J. C. Organometallics 2013, 32, 3053.
- 317 Frank, D. J.; Guiet, L.; Käslin, A.; Murphy, E.; Thomas, S. P. RSC Adv. 2013, 3, 25698.
- 318 Guo, N.; Hu, M.-Y.; Feng, Y.; Zhu, S.-F. Org. Chem. Front. 2015, 2, 692.
- 319 Xu, R.; Chakraborty, S.; Bellows, S. M.; Yuan, H.; Cundari, T. R.; Jones, W. D. ACS Catal. 2016, 6, 2127
- 320 Srimani, D.; Diskin-Posner, Y.; Ben-David, Y.; Milstein, D. Angew. Chem. Int. Ed. 2013, 52, 14131.
- 321 Enthaler, S.; Haberberger, M.; Irran, E. Chem. Asian J. 2011, 6, 1613.
- 322Le Bailly, B. A. F.; Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2012, 48, 1580.
- 323 MacNair, A. J.; Tran, M.-M.; Nelson, J. E.; Usherwood Sloan, G.; Ironmongerb, A.; Thomas, S. P. Org. Biomol. Chem. 2014, 12, 5082.
- 324 Carter, T. S.; Guiet, L.; Frank, D. J.; West, J.; Thomas, S. P. Adv. Synth. Catal. 2013, 355, 880.
- 325 Gordon, R. B.; Bertram, M.; Graedel, T. E. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 1209.
- 326 Frieden, E. J. Chem. Educ. 1985, 62, 917.
- 327For selected reviews, see: (a) Enthaler, S.; Wu, X.-F. Zinc Catalysis: Applications in Organic Synthesis, Wiley-VCH, Weinheim, 2015; (b) Wu, X.-F.; Neumann, H. Adv. Synth. Catal. 2012, 354, 3141; (c) Xu, X.-F. Chem. Asian J. 2012, 7, 2502; (d) Enthaler, S. ACS Catal. 2013, 3, 150.
- 328 Wehmschulte, R. J.; Wojtas, L. Inorg. Chem. 2011, 50, 11300.
- 329 Sigel, A.; Sigel, H.; Sigel, R. K. O. Interrelations between Essential Metal Ions and Human Diseases, Springer, Dordrecht, Netherlands, 2013.
- 330For selected reviews, see: (a) Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L. Chem. Rev. 2004, 104, 903; (b) McGarrigle, E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563; (c) Cahiez, G.; Duplais, C.; Buendia, J. Chem. Rev. 2009, 109, 1434; (d) Shi, Z.-H.; Li, N.-G.; Shi, Q.-P.; Tang, Y.-P.; Tang, H.; Shen, M.-Z.; Duan, J.-A. Curr. Org. Synth. 2014, 11, 204; (e) Liu, W.; Groves, J. T. Acc. Chem. Res. 2015, 48, 1727; (f) Valyaev, D. A.; Lavigne, G.; Lugan, N. Coord. Chem. Rev. 2016, 308, 191; (g) Liu, W.; Ackermann, L. ACS Catal. 2016, 6, 3743; (h) Garbe, M.; Junge, K.; Beller, M. Eur. J. Org. Chem. 2017, 4344.
- 331 Zhang, G.; Zeng, H.; Wu, J.; Yin, Z.; Zheng, S.; Fettinger, J. C. Angew. Chem. Int. Ed. 2016, 55, 14369.
- 332 Weil, T. A.; Metlin, S.; Wender, I. J. Organomet. Chem. 1973, 49, 227.
- 333For selected examples, see: (a) Pratt, S. L.; Faltynek, R. A. J. Organomet. Chem. 1983, 258, C5; (b) Hilal, H. S.; Abu-Eid, M.; Al-Subu, M.; Khalaf, S. J. Mol. Catal. 1987, 39, 1.
- 334 Yang, X.; Wang, C. Angew. Chem. Int. Ed. 2018, 57, 923.
- 335 Zhou, Y.-P.; Mo, Z.; Luecke, M.-P.; Driess, M. Chem. Eur. J. 2018, 24, 4780.
- 336 Brzozowska, A.; Azofra, L. M.; Zubar, V.; Atodiresei, I.; Cavallo, L.; Rueping, M.; El-Sepelgy, O. ACS Catal. 2018, 8, 4103.
- 337 Barksdale, J. In The Encyclopedia of the Chemical Elements, Ed.: Hampel, C. A., Reinhold Book Corporation, New York, 1968, pp. 732—738.
- 338For selected reviews, see: (a) Chen, H.; Nanayakkara, C. E.; Grassian, V. H. Chem. Rev. 2012, 112, 5919; (b) Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Chem. Rev. 2014, 114, 9754; (c) Asahi, R.; Morikawa, T.; Irie, H.; Ohwaki, T. Chem. Rev. 2014, 114, 9824; (d) Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C. Chem. Rev. 2014, 114, 9987; (e) Bai, Y.; Mora-Seró, I.; De Angelis, F.; Bisquert, J.; Wang, P. Chem. Rev. 2014, 114, 10095; (f) Yan, K.; Wu, G. ACS Sustainable Chem. Eng. 2015, 3, 779; (g) Miyauchi, M.; Irie, H.; Liu, M.; Qiu, X.; Yu, H.; Sunada, K.; Hashimoto, K. J. Phys. Chem. Lett. 2016, 7, 75.
- 339
Marek, I. Titanium and Zirconium in Organic Synthesis, Wiley-VCH, Weinheim, 2002.
10.1002/3527600671 Google Scholar
- 340(a) Finkbeiner, H. L.; Cooper, G. D. J. Org. Chem. 1961, 26, 4779; (b) Cooper, G. D.; Finkbeiner, H. L. J. Org. Chem. 1962, 27, 1493; (c) Finkbeiner, H. L.; Cooper, G. D. J. Org. Chem. 1962, 27, 3395.
- 341For selected examples, see: (a) Zhao, H.; Cai, M. J. Chem. Res. 2002, 608; (b) Cai, M.; Hao, W.; Zhao, H.; Song, C. J. Chem. Res. 2002, 485; (c) Cai, M.; Hao, W.; Zhao, H.; Song, C. J. Organomet. Chem. 2003, 679, 14; (d) Cai, M.; Xia, J.; Chen, G. J. Organomet. Chem. 2004, 689, 2531; (e) Huang, B.; Zhou, Z.; Cai, M.-Z. Chin. J. Chem. 2006, 24, 1469.
- 342 Sato, F.; Ishikawa, H.; Sato, M. Tetrahedron Lett. 1980, 21, 365.
- 343(a) Sato, F.; Ishikawa, H.; Sato, M. Tetrahedron Lett. 1981, 22, 85; (b) Sato, F.; Ishkawa, H.; Watanabe, H.; Miyake, T.; Sato, M. J. Chem. Soc., Chem.Commun. 1981, 718; (c) Sato, F.; Watanabe, H.; Tanaka, Y.; Sato, M. J. Chem. Soc., Chem. Commun. 1982, 1126; (d) Gao, Y.; Sato, F. J. Chem. Soc., Chem. Commun. 1995, 659.
- 344(a) Shao, P.; Wang, S.; Chen, C.; Xi, C. Org. Lett. 2016, 18, 2050; (b) Shao, P.; Wang, S.; Du, G.; Xi, C. RSC Adv. 2017, 7, 3534.
- 345 Luo, X.; Wang, S.; Xi, C. Org. Chem. Front. 2018, 5, 1184.
- 346(a) Ashby, E. C.; Noding, S. A. J. Org. Chem. 1979, 44, 4364; (b) Ashby, E. C.; Noding, S. A. J. Org. Chem. 1980, 45, 1035.
- 347 Parenty, A.; Campagne, J.-M. Tetrahedron Lett. 2002, 43, 1231.
- 348 Sun, R.; Liu, J.; Yang, S.; Chen, M.; Sun, N.; Chen, H.; Xie, X.; You, X.; Li, S.; Liu, Y. Chem. Commun. 2015, 51, 6426.
- 349 Joseph, J.; Jaroschik, F.; Harakat, D.; Radhakrishnan, K. V.; Vasse, J.-L.; Szymoniak, J. Chem. Eur. J. 2014, 20, 5433.
- 350 Gao, Y.; Urabe, H.; Sato, F. J. Org. Chem. 1994, 59, 5521.
- 351 Gao, Y.; Harada, K.; Hata, T.; Urabe, H.; Sato, F. J. Org. Chem. 1996, 60, 290.
- 352 Cesarotti, E.; Ugo, R.; Kagan, H. B. Angew. Chem. Int. Ed. Engl. 1979, 18, 779.
- 353(a) Halterman, R. L.; Vollhardt, K. P. C.; Welker, M. E. J. Am. Chem. Soc. 1987, 109, 8105; (b) Halterman, R. L.; Vollhardt, K. P. C. Organometallic 1988, 7, 883.
- 354 Broene, R. D.; Buchwald, S. L. J. Am. Chem. Soc. 1993, 115, 12569.