Organic Nanoprobes for Fluorescence and 19F Magnetic Resonance Dual-Modality Imaging
Minmin Xu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorChang Guo
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorGaofei Hu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorSuying Xu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorCorresponding Author
Leyu Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
E-mail: [email protected]; Tel.: 0086-010-64427869; Fax: 0086-010- 64427869Search for more papers by this authorMinmin Xu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorChang Guo
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorGaofei Hu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorSuying Xu
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Search for more papers by this authorCorresponding Author
Leyu Wang
State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
E-mail: [email protected]; Tel.: 0086-010-64427869; Fax: 0086-010- 64427869Search for more papers by this authorAbstract
Multimodal imaging techniques have been demonstrated to be greatly advantageous in achieving accurate diagnosis and gained increasing attention in recent decades. Herein, we present a new strategy to integrate the complementary modalities of 19F magnetic resonance imaging (19F MRI) and fluorescence imaging (FI) into a polymer nanoprobe composed of hydrophobic fluorescent organic core and hydrophilic fluorinated polymer shell. The alkyne-terminated fluorinated copolymer (Pn) of 2,2,2-trifluoroethyl acrylate (TFEA) and poly(ethylene glycol) methyl ether acrylate (PEGA) was first prepared via atom transfer radical polymerization (ATRP). The PEGA plays an important role in both improving 19F signal and modulating the hydrophilicity of Pn. The alkynyl tail in Pn is readily conjugated with azide modified tetra-phenylethylene (TPE) through click chemistry to form azo polymer (TPE-azo-Pn). The core-shell nanoprobes (TPE-P3N) with an average particle size of 57.2 ± 8.8 nm are obtained via self-assembly with ultrasonication in aqueous solution. These nanoprobes demonstrate high water stability, good biocompatibility, strong fluorescence and good 19F MRI performance, which present great potentials for simultaneous fluorescence imaging and 19F–MR imaging.
Supporting Information
Filename | Description |
---|---|
cjoc201700382-sup-0001-AppendixS1.pdfPDF document, 1.1 MB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1Kim, J.; Piao, Y.; Hyeon, T. Chem. Soc. Rev. 2009, 38, 372.
- 2Lee, D. E.; Koo, H.; Sun, I. C.; Ryu, J. H.; Kim, K.; Kwon, I. C. Chem. Soc. Rev. 2012, 41, 2656.
- 3Kelkar, S. S.; Reineke, T. M. Bioconjugate Chem. 2011, 22, 1879.
- 4Kircher, M. F.; Hricak, H.; Larson, S. M. Mol. Oncol. 2012, 6, 182.
- 5Yang, K.; Hu, L. L.; Ma, X. X.; Ye, S. Q.; Cheng, L.; Shi, X. Z.; Li, C. H.; Li, Y. G.; Liu, Z. Adv. Mater. 2012, 24, 1868.
- 6Cheng, L.; Yang, K.; Li, Y. G.; Chen, J. H.; Wang, C.; Shao, M. W.; Lee, S. T.; Liu, Z. Angew. Chem. Int. Ed. 2011, 50, 7385.
- 7Chen, S. Z.; Yang, Y. Q.; Li, H. D.; Zhou, X.; Liu, M. L. Chem. Commun. 2014, 50, 283.
- 8Janjic, J. M.; Srinivas, M.; Kadayakkara, D. K. K.; Ahrens, E. T. J. Am. Chem. Soc. 2008, 130, 2832.
- 9Li, C. Y.; Cao, L. M.; Zhang, Y. J.; Yi, P. W.; Wang, M.; Tan, B.; Deng, Z. W.; Wu, D. M.; Wang, Q. B. Small 2015, 11, 4517.
- 10Rolfe, B. E.; Blakey, I.; Squires, O.; Peng, H.; Boase, N. R. B.; Alexander, C.; Parsons, P. G.; Boyle, G. M.; Whittaker, A. K.; Thurecht, K. J. J. Am. Chem. Soc. 2014, 136, 2413.
- 11Tanaka, K.; Kitamura, N.; Chujo, Y. Bioconjugate Chem. 2011, 22, 1484.
- 12Tu, D. T.; Liu, Y. S.; Zhu, H. M.; Chen, X. Y. Chem.-Eur. J. 2013, 19, 5516.
- 13Stasiuk, G. J.; Minuzzi, F.; Sae-Heng, M.; Rivas, C.; Juretschke, H. P.; Piemonti, L.; Allegrini, P. R.; Laurent, D.; Duckworth, A. R.; Beeby, A.; Rutter, G. A.; Long, N. J. Chem.-Eur. J. 2015, 21, 5023.
- 14Pan, W.; Wang, H. H.; Yang, L. M.; Yu, Z. Z.; Li, N.; Tang, B. Anal. Chem. 2016, 88, 6743.
- 15Kong, F. P.; Zhao, Y. H.; Liang, Z. Y.; Liu, X. J.; Pan, X. H.; Luan, D. R.; Xu, K. H.; Tang, B. Anal. Chem. 2017, 89, 688.
- 16Wu, X. F.; Li, L. H.; Shi, W.; Gong, Q. Y.; Ma, H. M. Angew. Chem. Int. Ed. 2016, 55, 14728.
- 17Wang, Q.; Li, Z.; Tao, D. D.; Zhang, Q.; Zhang, P.; Guo, D. P.; Jiang, Y. B. Chem. Commun. 2016, 52, 12929.
- 18Wan, Q. Q.; Song, Y. C.; Li, Z.; Gao, X. H.; Ma, H. M. Chem. Commun. 2013, 49, 502.
- 19Sun, X. L.; Kim, G.; Xu, Y. F.; Yoon, J.; James, T. D. ChemPlusChem 2016, 81, 30.
- 20Guo, Z. Q.; Park, S.; Yoon, J.; Shin, I. Chem. Soc. Rev. 2014, 43, 16.
- 21Yao, J.; Yang, M.; Duan, Y. X. Chem. Rev. 2014, 114, 6130.
- 22Lee, M. H.; Park, N.; Yi, C.; Han, J. H.; Hong, J. H.; Kim, K. P.; Kang, D. H.; Sessler, J. L.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 14136.
- 23Yousaf, M. Z.; Yu, J.; Hou, Y. L.; Gao, S. Chin. Phys. B 2013, 22, 1.
- 24Debbage, P.; Jaschke, W. Histochem. Cell Biol. 2008, 130, 845.
- 25Villaraza, A. J. L.; Bumb, A.; Brechbiel, M. W. Chem. Rev. 2010, 110, 2921.
- 26Tirotta, I.; Dichiarante, V.; Pigliacelli, C.; Cavallo, G.; Terraneo, G.; Bombelli, F. B.; Metrangolo, P.; Resnati, G. Chem. Rev. 2015, 115, 1106.
- 27Chen, H. L.; Song, M. L.; Tang, J.; Hu, G. F.; Xu, S. Y.; Guo, Z. D.; Li, N. N.; Cui, J. B.; Zhang, X. Z.; Chen, X. Y.; Wang, L. Y. ACS Nano 2016, 10, 1355.
- 28Yuan, Y.; Sun, H. B.; Ge, S. C.; Wang, M. J.; Zhao, H. X.; Wang, L.; An, L. N.; Zhang, J.; Zhang, H. F.; Hu, B.; Wang, J. F.; Liang, G. L. ACS Nano 2015, 9, 761.
- 29Goswami, L. N.; Khan, A. A.; Jalisatgi, S. S.; Hawthorne, M. F. Chem. Commun. 2014, 50, 5793.
- 30Jacoby, C.; Temme, S.; Mayenfels, F.; Benoit, N.; Krafft, M. P.; Schubert, R.; Schrader, J.; Flogel, U. NMR Biomed. 2014, 27, 261.
- 31Ahrens, E. T.; Zhong, J. NMR Biomed. 2013, 26, 860.
- 32Matsushita, H.; Mizukami, S.; Sugihara, F.; Nakanishi, Y.; Yoshioka, Y.; Kikuchi, K. Angew. Chem. Int. Ed. 2014, 53, 1008.
- 33Mizukami, S.; Takikawa, R.; Sugihara, F.; Hori, Y.; Tochio, H.; Walchli, M.; Shirakawa, M.; Kikuchi, K. J. Am. Chem. Soc. 2008, 130, 794.
- 34Sakamoto, T.; Hasegawa, D.; Fujimoto, K. Chem. Commun. 2015, 51, 8749.
- 35Tirotta, I.; Mastropietro, A.; Cordiglieri, C.; Gazzera, L.; Baggi, F.; Baselli, G.; Bruzzone, M. G.; Zucca, I.; Cavallo, G.; Terraneo, G.; Bombelli, F. B.; Metrangolo, P.; Resnati, G. J. Am. Chem. Soc. 2014, 136, 8524.
- 36Wang, K. W.; Peng, H.; Thurecht, K. J.; Puttick, S.; Whittaker, A. K. Biomacromolecules 2015, 16, 2827.
- 37Thurecht, K. J.; Blakey, I.; Peng, H.; Squires, O.; Hsu, S.; Alexander, C.; Whittaker, A. K. J. Am. Chem. Soc. 2010, 132, 5336.
- 38Peng, S.; Yan, W.; Wang, L. Mater. Res. Bull. 2013, 48, 4693.
- 39Nurmi, L.; Peng, H.; Seppala, J.; Haddleton, D. M.; Blakey, I.; Whittaker, A. K. Polym. Chem. 2010, 1, 1039.
- 40Peng, H.; Blakey, I.; Dargaville, B.; Rasoul, F.; Rose, S.; Whittaker, A. K. Biomacromolecules 2009, 10, 374.
- 41Takaoka, Y.; Kiminami, K.; Mizusawa, K.; Matsuo, K.; Narazaki, M.; Matsuda, T.; Hamachi, I. J. Am. Chem. Soc. 2011, 133, 11725.
- 42Yuan, Y.; Ge, S. C.; Sun, H. B.; Dong, X. J.; Zhao, H. X.; An, L. N.; Zhang, J.; Wang, J. F.; Hu, B.; Liang, G. L. ACS Nano 2015, 9, 5117.
- 43Guo, Z. D.; Gao, M. N.; Song, M. L.; Li, Y. S.; Zhang, D. L.; Xu, D.; You, L. Y.; Wang, L. L.; Zhuang, R. Q.; Su, X. H.; Liu, T.; Du, J.; Zhang, X. Z. Adv. Mater. 2016, 28, 5898.
- 44Hu, G. F.; Li, N. N.; Tang, J.; Xu, S. Y.; Wang, L. Y. ACS Appl. Mater. Interfaces 2016, 8, 22830.
- 45Mignion, L.; Magat, J.; Schakman, O.; Marbaix, E.; Gallez, B.; Jordan, B. F. Magn. Reson. Med. 2013, 69, 248.
- 46Nakamura, T.; Matsushita, H.; Sugihara, F.; Yoshioka, Y.; Mizukami, S.; Kikuchi, K. Angew. Chem. Int. Ed. 2015, 54, 1007.
- 47Xu, S. Y.; Bai, X. L.; Ma, J.; Xu, M.; Hu, G. F.; James, T. D.; Wang, L. Y. Anal. Chem. 2016, 88, 7853.
- 48Lai, C. T.; Chien, R. H.; Kuo, S. W.; Hong, J. L. Macromolecules 2011, 44, 6546.
- 49Hong, Y.; Lam, J. W. Y.; Tang, B. Z. Chem. Soc. Rev. 2011, 40, 5361.
- 50Gorvin, J. H. J. Chem. Soc. 1959, 678.
- 51Wei, Y. R.; Yang, X. D.; Ma, Y. R.; Wang, S. F.; Yuan, Q. Chin. J. Chem. 2016, 34, 558.
- 52Zhang, G. F.; Chen, T.; Chen, Z. Q.; Aldred, M. P.; Meng, X. G.; Zhu, M. Q. Chin. J. Chem. 2015, 33, 939.
- 53Fuchs, A. V.; Bapat, A. P.; Cowin, G. J.; Thurecht, K. J. Polym. Chem. 2017, 8, 5157.