Sorting Semiconducting Single-Walled Carbon Nanotubes by Water-Soluble Polyfluorene Assisted Electrophoresis and Its Application in Field-effect Transistors
Haoyun Zhu
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Weizhi Wang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, ChinaSearch for more papers by this authorHaoyun Zhu
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Weizhi Wang
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science, Fudan University, Shanghai 200433, ChinaSearch for more papers by this authorAbstract
We report a considerably promising method based on agarose gel electrophoresis (AGE) to separate single-walled carbon nanotubes by adding a water-soluble polyfluorene (w-PFO) as surfactant into the agarose gel. In this effective method, the AGE/w-PFO gel network will trap more semiconducting single-walled carbon nanotubes (SWNTs) with the assistance of w-PFO, for the strong interaction between w-PFO and semiconducting species. The optical absorbance, photoluminescence emission and resonant Raman scattering characterization were used to verify the separation effect. The purity of separated semiconducting species is as high as (98±1)%. The demonstrated field effect transistors give the on/off ratio and mobility about 27000 and 10.2 cm2·V−1·s−1, respectively.
REFERENCES
- 1
Saito, R.;
Dresselhaus, G.;
Dresselhaus, M. S.,
Physical Properties of Carbon Nanotubes, 4 ed., Imperial College Press, London, UK, 1998, pp. 35–58.
10.1142/9781860943799_0003 Google Scholar
- 2 Joo, Y.; Brady, G. J.; Arnold, M. S.; Gopalan, P.. Langmuir, 2014, 30, 3460.
- 3 Liu, L.; Yang, C.; Zhao, K.; Li, J.; Wu, H.. Nat. Commun., 2013, 4, 2989.
- 4 Nouchi, R.; Tomita, H.; Ogura, A.; Kataura, H.; Shiraishi, M.. Appl. Phys. Lett., 2008, 92, 253507.
- 5 Spadafora, E. J.; Saint-Aubin, K.; Celle, C.; Demadrille, R.; Grévin, B.; Simonato, J.. Carbon, 2012, 50, 3459.
- 6 Zhang, H.; Liu, C.; Zhang, X.; Kang, J.. Chin. J. Chem., 2014, 32, 293.
- 7 Brady, G. J.; Joo, Y.; Singha Roy, S.; Gopalan, P.; Arnold, M. S.. Appl. Phys. Lett., 2014, 104, 83107.
- 8 Wang, H.; Wei, L.; Ren, F.; Wang, Q.; Pfefferle, L. D.; Haller, G. L.; Chen, Y.. ACS Nano, 2013, 7, 614.
- 9 He, M.; Fedotov, P. V.; Obraztsova, E. D.; Viitanen, V.; Sainio, J.; Jiang, H.; Kauppinen, E. I.; Niemelä, M.; Lehtonen, J.. Carbon, 2012, 50, 4294.
- 10 Brady, G. J.; Joo, Y.; Singha Roy, S.; Gopalan, P.; Arnold, M. S.. Appl. Phys. Lett., 2014, 104, 83107.
- 11 Brady, G. J.; Joo, Y.; Wu, M.; Shea, M. J.; Gopalan, P.; Ar nold, M. S.. ACS Nano, 2014, 8, 11614.
- 12 Wang, W. Z.; Mahasin, A. S.; Gao, P. Q.; Lim, K. H.; Chan-Park, M. B.. J. Phys. Chem. C, 2012, 116, 23027.
- 13 Tulevski, G. S.; Franklin, A. D.; Afzali, A.. ACS Nano, 2013, 7, 2971.
- 14 Liu, H.; Nishide, D.; Tanaka, T.; Kataura, H.. Nat. Commun., 2011, 2, 309.
- 15 Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F.. ACS Nano, 2014, 8, 1817.
- 16 Moshammer, K.; Hennrich, F.; Kappes, M. M.. Nano Res., 2009, 2, 599.
- 17 Tanaka, T.; Jin, H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H.. Nano Lett., 2009, 9, 1497.
- 18 Khripin, C. Y.; Fagan, J. A.; Zheng, M.. J. Am. Chem. Soc., 2013, 135, 6822.
- 19 Qiu, H.; Maeda, Y.; Akasaka, T.. J. Am. Chem. Soc., 2009, 131, 16529.
- 20 Shen, X.; Qiu, H.; Li, J.; Zhang, H.; Zhao, B.; Yang, J.. J. Mater. Chem. A, 2014, 2, 11222.
- 21 Tanaka, T.; Urabe, Y.; Nishide, D.; Kataura, H.. J. Am. Chem. Soc., 2011, 133, 17610.
- 22 Tanaka, T.; Jin, H.; Miyata, Y.; Kataura, H.. Appl. Phys. Express, 2008, 1, 114001.
- 23 Mesgari, S.; Poon, Y. F.; Yan, L. Y.; Chen, Y.; Loo, L. S.; Thong, Y. X.; Chan-Park, M. B.. J. Phys. Chem. C, 2012, 116, 10266.
- 24 Hwang, J.; Nish, A.; Doig, J.; Douven, S.; Chen, C.; Chen, L.; Nicholas, R. J.. J. Am. Chem. Soc., 2008, 130, 3543.
- 25 Lee, H. W.; Yoon, Y.; Park, S.; Oh, J. H.; Hong, S.; Liyanage, L. S.; Wang, H.; Morishita, S.; Patil, N.; Park, Y. J.. Nat. Commun., 2011, 2, 541.
- 26 Wang, W. Z.; Li, W. F.; Pan, X. Y.; Li, C. M.; Li, L. J.; Mu, Y. G.; Rogers, J. A.; Chan Park, M. B.. Adv. Funct. Mater., 2011, 21, 1643.
- 27 Wang, F.; Bazan, G. C.. J. Am. Chem. Soc., 2006, 128, 15786.
- 28 Yamamoto, T.; Morita, A.; Miyazaki, Y.; Maruyama, T.; Wa-kayama, H.; Zhou, Z. H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K.. Macromolecules, 1992, 25, 1214.
- 29 Chiang, I. W.; Brinson, B. E.; Huang, A. Y.; Willis, P. A.; Bronikowski, M. J.; Margrave, J. L.; Smalley, R. E.; Hauge, R. H.. J. Phys. Chem. B, 2001, 105, 8297.
- 30 Cao, Q.; Kim, H.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A.. Nature, 2008, 454, 495.
- 31 Li, H.; Jin, H.; Zhang, J.; Wen, X.; Song, Q.; Li, Q.. J. Phys. Chem. C, 2010, 114, 19234.
- 32 Strano, M. S.; Doorn, S. K.; Haroz, E. H.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.. Nano Lett., 2003, 3, 1091.
- 33 Li, L.; Lin, T.; Doig, J.; Mortimer, I. B.; Wiltshire, J. G.; Tay-lor, R. A.; Sloan, J.; Green, M.; Nicholas, R. J.. Phys. Rev. B, 2006, 74, 245418.
- 34 Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B.. Science, 2002, 298, 2361.
- 35 Reich, S.; Thomsen, C.; Robertson, J.. Phys. Rev. Lett., 2005, 95, 77402.
- 36 Luo, Z.; Pfefferle, L. D.; Haller, G. L.; Papadimitrakopoulos, F.. J. Am. Chem. Soc., 2006, 128, 15511.
- 37 Oyama, Y.; Saito, R.; Sato, K.; Jiang, J.; Samsonidze, G. G.; Grüneis, A.; Miyauchi, Y.; Maruyama, S.; Jorio, A.; Dresselhaus, G.. Carbon, 2006, 44, 873.
- 38 Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Her sam, M. C.. Nat. Nanotechnol., 2006, 1, 60.
- 39 Fantini, C.; Jorio, A.; Souza, M.; Strano, M. S.; Dresselhaus, M. S.; Pimenta, M. A.. Phys. Rev. Lett., 2004, 93, 147406.
- 40 Maultzsch, J.; Telg, H.; Reich, S.; Thomsen, C.. Phys. Rev. B, 2005, 72, 205438.
- 41 Liu, C.; Zhang, H.. Nanoscale, 2010, 2, 1901.