Copper-Catalyzed Three-Component Azidotrifluoromethylation/Difunctionalization of Alkenes
Corresponding Author
Mingbo Yang
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, ChinaSearch for more papers by this authorWenlu Wang
Gansu Province Environmental Monitoring Center, Lanzhou, Gansu 730020, China
Search for more papers by this authorYin Liu
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorLijie Feng
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorXuexia Ju
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorCorresponding Author
Mingbo Yang
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, ChinaSearch for more papers by this authorWenlu Wang
Gansu Province Environmental Monitoring Center, Lanzhou, Gansu 730020, China
Search for more papers by this authorYin Liu
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorLijie Feng
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorXuexia Ju
Gansu Research Institute of Chemical Industry, Lanzhou, Gansu 730020, China
Search for more papers by this authorAbstract
A novel three-component strategy for the azidotrifluoromethylation of alkenes has been presented here. The reaction proceeded smoothly under gentle temperature and gave the bifunctional olefins in high yields. Furthermore, 1,3-dipolar reactions between azide-containing products and phenylacetylene revealed great potential in molecular modification by using this method.
Supporting Information
As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re-organized for online delivery, but are not copy-edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.
Filename | Description |
---|---|
cjoc_201400167_sm_suppl.pdf2.3 MB | suppl |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1a Wolfe, J. P.. Synlett, 2008, 2913.
- 1b Jensen, K. H.; Sigman, M. S.. Org. Biomol. Chem., 2008, 6, 4083.
- 1c Cardona, F.; Goti, A.. Nat. Chem., 2009, 1, 269.
- 1d McDonald, R. I.; Liu, G.; Stahl, S. S.. Chem. Rev., 2011, 111, 2981.
- 1e Wolfe, J. P.. Angew. Chem., Int. Ed., 2012, 51, 10224.
- 2a Smart, B. E.. J. Fluorine Chem., 2001, 109, 3.
- 2b
Kirsch, P.,
In Modern Fluoroorganic Chemistry, Wiley-VCH, Weinheim, 2004.
10.1002/352760393X Google Scholar
- 2c
Uneyama, K.,
In Organofluorine Chemistry, Blackwell, Oxford, 2006.
10.1002/9780470988589 Google Scholar
- 2d
Ojima, I.,
In Fluorine in Medicinal Chemistry and Chemical Biology, Wiley-Blackwell, Chichester, 2009.
10.1002/9781444312096 Google Scholar
- 2e Muller, K.; Faeh, C.; Diederich, F.. Science, 2007, 317, 1881.
- 2f Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V.. Chem. Soc. Rev., 2008, 37, 320.
- 3a Smart, B. E.. Chem. Rev., 1996, 96, 1555.
- 3b Shimizu, M.; Hiyama, T.. Angew. Chem., Int. Ed., 2005, 44, 214.
- 3c Hird, M.. Chem. Soc. Rev., 2007, 36, 2070.
- 3d Kirk, K. L.. Org. Process Res. Dev., 2008, 12, 305.
- 3e Tomashenko, O. A.; Grushin, V. V.. Chem. Rev., 2011, 111, 4475.
- 3f Furuya, T.; Kamlet, A. S.; Ritter, T.. Nature, 2011, 473, 470.
- 4a Cho, E. J.; Senecal, T. D.; Zhang, T. Y.; Watson, D. A.; Buchwald, S. L.. Science, 2010, 328, 1679.
- 4b Senecal, T. D.; Parson, A. T.; Buchwald, S. L.. J. Org. Chem., 2011, 76, 1174.
- 4c Parsons, A. T.; Buchwald, S. L.. Angew. Chem., 2011, 123, 9286. Angew. Chem., Int. Ed., 2011, 50, 9120.
- 4d Lü, C.; Shen, Q.; Liu, D.. Chin. J. Org. Chem., 2012, 32, 1380 (in Chinese).
- 4e Pan, F.; Shi, Z.. Acta Chim. Sinica, 2012, 70, 1679 (in Chinese).
- 5a Grushin, V. V.; Marshall, W. J.. J. Am. Chem. Soc., 2006, 128, 12644.
- 5b Tomashenko, O. A.; Escudero-Adan, E. C.; Belmonte, M. M.; Grushin, V. V.. Angew. Chem., Int. Ed., 2011, 50, 7655.
- 5c Novak, P.; Lishchynskyi, A.; Grushin, V. V.. Angew. Chem., Int. Ed., 2012, 51, 7767.
- 5d Ball, N. D.; Kampf, J. W.; Sanford, M. S.. J. Am. Chem. Soc., 2010, 132, 2878.
- 5e Ball, N. D.; Gary, J. B.; Ye, Y.; Sanford, M. S.. J. Am. Chem. Soc., 2011, 133, 7577.
- 5f Ye, Y.; Lee, S. H.; Sanford, M. S.. Org. Lett., 2011, 13, 5464.
- 6 Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J.. J. Am. Chem. Soc., 2011, 133, 4160.
- 7a Mu, X.; Wu, T.; Wang, H.-Y.; Guo, Y.-L.; Liu, G.. J. Am. Chem. Soc., 2012, 134, 878.
- 7b Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X.. Angew. Chem., 2013, 125, 7100. Angew. Chem., Int. Ed., 2013, 52, 6962.
- 7c Egami, H.; Shimizu, R.; Usui, Y.; Sodeoka, M.. Chem. Commun., 2013, 49, 7346.
- 7d Egami, H.; Shimizu, R.; Sodeoka, M.. J. Fluorine Chem., 2013, 152, 51.
- 7e Chen, Z.-M.; Bai, W.; Wang, S.-H.; Yan, B.-M.; Tu, Y.-Q.; Zhang, F.-M.. Angew. Chem., 2013, 125, 9963. Angew. Chem., Int. Ed., 2013, 52, 9781.
- 7f Gao, P.; Yan, X.-B.; Tao, T.; Yang, F.; He, T.; Song, X.-R.; Liu, X.-Y.; Liang, Y.-M.. Chem. Eur. J., 2013, 19, 14420.
- 8a Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabó, K. J.. Org. Lett., 2012, 14, 2882.
- 8b Egami, H.; Shimizu, R.; Sodeoka, M.. Tetrahedron Lett., 2012, 53, 5503.
- 8c Zhu, R.; Buchwald, S. L.. J. Am. Chem. Soc., 2012, 134, 12462.
- 8d Li, Y.; Studer, A.. Angew. Chem., 2012, 124, 8345. Angew. Chem., Int. Ed., 2012, 51, 8221.
- 8e Lu, D.-F.; Zhu, C.-L.; Xu, H.. Chem. Sci., 2013, 4, 2478.
- 9a Wu, X.; Chu, L.; Qing, F.-L.. Angew. Chem., 2013, 125, 2254. Angew. Chem., Int. Ed., 2013, 52, 2198.
- 9b Wilger, D. J.; Gesmundo, N. J.; Nicewicz, D. A.. Chem. Sci., 2013, 4, 3160.
- 10a
Egami, H.;
Kawamura, S.;
Miyazaki, A.;
Sodeoka, M..
Angew. Chem.,
2013,
125,
4092.
Angew. Chem., Int. Ed.,
2013,
52,
7841.
10.1002/ange.201210250 Google Scholar
- 10b Kim, E.; Choi, S.; Kim, H.; Cho, E. J.. Chem. Eur. J., 2013, 19, 6209.
- 10c Yasu, Y.; Koike, T.; Akita, M.. Org. Lett., 2013, 15, 2136.
- 11a Egami, H.; Shimizu, R.; Kawamura, S.; Sodeoka, M.. Angew. Chem., Int. Ed., 2013, 52, 4000.
- 11b Kong, W.; Casimiro, M.; Merino, E.; Nevado, C.. J. Am. Chem. Soc., 2013, 135, 14480.
- 11c He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Wang, Y.-Q.; Luo, J.-Y.; Liu, X.-Y.; Liang, Y.-M.. Chem. Commun., 2013, 49, 5687.
- 11d Zhu, R.; Buchwald, S. L.. Angew. Chem., Int. Ed., 2013, 52, 12655.
- 12a Yasu, Y.; Koike, T.; Akita, M.. Angew. Chem., Int. Ed., 2012, 51, 9567.
- 12b Mizuta, S.; Verhoog, S.; Engle, K. M.; Khotavivattana, T.; O'Duill, M.; Wheelhouse, K.; Rassias, G.; Médebielle, M.; Gouverneur, V.. J. Am. Chem. Soc., 2013, 135, 2505.
- 13a Feng, C.; Loh, T.-P.. Chem. Sci., 2012, 3, 3458.
- 13b Jiang, X.-Y.; Qing, F.-L.. Angew. Chem., Int. Ed., 2013, 52, 14177.
- 14a Ilchenko, N. O.; Janson, P. G.; Szabó, K. J.. J. Org. Chem., 2013, 78, 11087.
- 14b He, Y.-T.; Li, L.-H.; Yang, Y.-F.; Zhou, Z.-Z.; Hua, H.-L.; Liu, X.-Y.; Liang, Y.-M.. Org. Lett., 2014, 16, 270.
- 15a Justin Thomas, K. R. J.; Velusamy, M.; Lin, J. T.; Chuen, C.-H.; Tao, Y.-T.. Chem. Mater., 2005, 17, 1860.
- 15b Hili, R.; Yudin, A. K.. Nat. Chem. Biol., 2006, 2, 284.
- 15c Binder, W. H.; Sachsenhofer, R.; Macromol. Rapid Commun., 2007, 28, 15.
- 15d Jiang, Y.; Kuang, C.; Han, C.; Wang, H.; Liang, X.. Chin. J. Org. Chem., 2012, 32, 2231 (in Chinese).
- 16a
Bräse, S.;
Gil, C.;
Knepper, K.;
Zimmermann, V..
Angew. Chem.,
2005,
117,
5320.
Angew. Chem., Int. Ed.,
2005,
44,
5188.
10.1002/ange.200400657 Google Scholar
- 16b Driver, T. G.. Org. Biomol. Chem., 2010, 8, 3831.
- 16c Minozzi, M.; Nanni, D.; Spagnolo, P.. Chem. Eur. J., 2009, 15, 7830.
- 16d Yuan, Y.; Shen, T.; Wang, K.; Jiao, N.. Chem. Asian J., 2013, 8, 2932.
- 17a Eisenberger, P.; Gischig, S.; Togni, A.. Chem. Eur. J., 2006, 12, 2579.
- 17b Niedermann, K.; Fruh, N.; Vinogradova, E.; Wiehn, M. S.; Moreno, A.; Togni, A.. Angew. Chem., Int. Ed., 2011, 50, 1059.
- 18 Wang, F.; Qi, X.; Liang, Z.; Chen, P.; Liu, G., Angew. Chem., Int. Ed., 2014, 53, 1881.
- 19 See the Supporting Information for detailed data.
- 20a Kamigata, N.; Fukushima, T.; Yoshida, M.. Chem. Lett., 1990, 649.
- 20b Liu, W.; Huang, X.; Cheng, M.-J.; Nielsen, R. J.; Goddard III, W. A.; Groves, J. T.. Science, 2012, 337, 1322.
- 20c Yasu, Y.; Koike, T.; Akita, M.. Chem. Commun., 2013, 49, 2037.
- 20d Pair, E.; Monteiro, N.; Bouyssi, D.; Baudoin, O.. Angew. Chem., Int. Ed., 2013, 52, 5346.
- 20e Liu, X.; Xiong, F.; Huang, X.; Xu, L.; Li, P.; Wu, X.. Angew. Chem., Int. Ed., 2013, 52, 6962.
- 20f Xu, C.; Liu, J.; Ming, W.; Liu, Y.; Liu, J.; Wang, M.; Liu, Q.. Chem. Eur. J., 2013, 19, 910.