Organogels Derived from Potassium 8-Nitroquinolinecarboxylate
Hai-Yu Hu
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Search for more papers by this authorYong Yang
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Search for more papers by this authorJun-Feng Xiang
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Search for more papers by this authorChuan-Feng Chen
Tel.: 0086-010-62588936; Fax: 0086-010-62554449
Search for more papers by this authorHai-Yu Hu
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Search for more papers by this authorYong Yang
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Graduate School, Chinese Academy of Sciences, Beijing 100049, China
Search for more papers by this authorJun-Feng Xiang
Beijing National Laboratory for Molecular Sciences, Center for Chemical Biology, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100080, China
Search for more papers by this authorChuan-Feng Chen
Tel.: 0086-010-62588936; Fax: 0086-010-62554449
Search for more papers by this authorAbstract
A new class of organogels derived from potassium 8-nitroquinolinecarboxylate was selectively formed inTHF/MeOH (V:V=1:1), and their superstructures were characterized by atomic force microscopy, scanning electron microscopy and transmission electron microscopy.
REFERENCES
- 1
Lehn, J. M., Supramolecular Chemistry, Concepts and Perspectives, VCH, Weinheim, 1995.
10.1002/3527607439 Google Scholar
- 2 Schneider, H. J.; Yatmirsky, A., Principles and Methods in Supramolecular Chemistry, Wiley, Chichester, 2000.
- 3
Reinhoudt, D. N., Supramolecular Materials and Technologies, Perspectives in Supramolecular Chemistry, Vol. 4, Wiley, New York, 1999.
10.1002/9780470511497 Google Scholar
- 4For reviews on low molecular mass organic gelators, see:
- 4a Terech, P.; Weiss, R. G.. Chem. Rev., 1997, 97, 3133.
- 4b Estroff, L. A.; Hamilton, D. A.. Chem. Rev., 2004, 104, 1201.
- 4c Sangeetha, N. M.; Maitra, U.. Chem. Soc. Rev., 2005, 34, 821.
- 5Some examples of metal coordination to assist molecular gelation:
- 5a Fages, F.. Angew. Chem., Int. Ed., 2006, 45, 1680.
- 5b Kawano, S. I.; Fujita, N.; Shinkai, S.. J. Am. Chem. Soc., 2004, 126, 8592.
- 5c Charvet, R.; Jiang, D. L.; Aida, T.. Chem. Commun., 2004, 2664,
- 5d Shirakawa, M.; Fujita, N.; Tani, T.; Kanekob, K.; Shinkai, S.. Chem. Commun., 2005, 4149.
- 5e Ghoussoub, A.; Lehn, J. M.. Chem. Commun., 2005, 5763.
- 5f Vemula, P. K.; John, G.. Chem. Commun., 2006, 2218.
- 6a Tachiban, T.; Mori, T.; Hori, K. Bull.. Chem. Soc. Jpn., 1980, 53, 1714.
- 6b Mieden-Gundert, G.; Klein, L.; Fischer, M.; Vogtle, F.; Heuze, K.; Pozzo, J. L.; Vallier, M.; Fages, F.. Angew. Chem., Int. Ed., 2001, 40, 3164.
- 6c Ahmed, S. A.; Sallenave, X.; Fages, F.; Mieden-Gundert, G.; Muller, W. M.; Muller, U.; Vogtle, F.; Pozzo, J. L.. Langmuir, 2002, 18, 7096.
- 6d Khatua, D.; Dey, J.. Langmuir, 2005, 21, 105.
- 7a Jiang, H.; Leger, J. M.; Guionneauc, P.; Huc, I.. Org. Lett., 2004, 6, 2985.
- 7b Hu, H. Y.; Chen, C. F.. Tetrahedron Lett., 2006, 47, 175.
- 7c Hu, Z. Q.; Hu, H. Y.; Chen, C. F.. J. Org. Chem., 2006, 71, 1131.
- 8 Langford, S. J.; Latter, M. J.; Lau, V. L.; Martin, L. L.; Mechler, A.. Org. Lett., 2006, 8, 1371.
- 9 The similar phenomenon has been found in EtOH/THF (V:V=1:1) system, and adding KOH into the THF/MeOH solution of 1 could increase the gel-to-sol phase transition temperature. Further investigation will be reported in the nearer future.
- 10 DSC was conducted on a Wettler Toledo DSC 822e instrument using a ramping method starting at −50 °C with 10 °C/min.