Liquid-Phase Synthesis of Methyl (2Z)-2-Arylsulfonylmethyl-2- alkenoates from PEG-Supported α-Phenylselenopropionate
Qiong Wang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorShu-Ying Lin
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorLei Guo
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorMei-Hong Wei
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorXian Huang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorQiong Wang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorShu-Ying Lin
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorLei Guo
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorMei-Hong Wei
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorXian Huang
College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, Jiangxi 330027, China
Search for more papers by this authorAbstract
Treatment of lithio derivative of novel PEG-supported (-phenylselenopropionate with aldehydes, followed by oxidation-elimination with 30% hydrogen peroxide, formed Baylis-Hillman products, which were then reacted with sodium arylsulfinate. The resulting sulfonylated products were cleaved from the PEG efficiently affording methyl (2Z)-2-arylsulfonylmethyl-2-alkenoates in good yields and high purities.
REFERENCES
- 1a Gravert, D. J.; Janda, K. D.. Chem. Rev., 1997, 97, 489.
- 1b Wentworth, P.; Janda, K. D.. Chem. Commun., 1999, 1917.
- 1c Toy, P. H.; Janda, K. D.. Acc. Chem. Res., 2000, 33, 546.
- 1d Shuttleworth, S. J.; Allin, S. M.; Sharma, P. K.. Synthesis, 1997, 1217.
- 1e Sammelson, R. E.; Kurth, M. J.. Chem. Rev., 2001, 101, 137.
- 2a Früchtel, J. S.; Jung, G.. Angew. Chem., Int. Ed. Engl., 1996, 35, 17.
- 2b Dickerson, T. J.; Reed, N. N.; Janda, K. D.. Chem. Rev., 2002, 102, 3325.
- 2c Zhao, X.; Metz, W. A.; Sieber, F.; Janda, K. D.. Tetrahedron Lett., 1998, 39, 8433.
- 2d Gravert, D. J.; Janda, K. D.. Curr. Opin. Chem. Biol., 1997, 1, 107.
- 3a Harris, J. M., Polyethylene glycol Chemistry: Biotechnical and Biomedical Applications, Plenum Press, New York, 1992, 1.
- 3b Lin, X. F.; Wang, Y. G.; Ding, H. F.. Chin. J. Chem., 2004, 22, 415.
- 4 Shey, J.; Cun, C. M.. Tetrahedron Lett., 2002, 43, 1725.
- 5For review, see:
- 5a Drewes, S. E.; Roos, G. H. P.. Tetrahedron, 1988, 44, 4653.
- 5b Basavaiah, D.; Rao, P. D.; Hyma, R. S.. Tetrahedron, 1996, 52, 8001.
- 5c Ciganek, E.. Org. React., 1997, 51, 201.
- 5d
Langer, P..
Angew. Chem., Int. Ed.,
2000,
39,
3049.
10.1002/1521-3773(20000901)39:17<3049::AID-ANIE3049>3.0.CO;2-5 CAS PubMed Web of Science® Google Scholar
- 5e Basavaiah, D.; Rao, A. J.; Satyanarayana, T.. Chem. Rev., 2003, 103, 811.
- 6For recent selected examples, see:
- 6a Das, B.; Banerjee, J.; Mahender, G.; Majhi, A.. Org. Lett., 2004, 6, 3349.
- 6b Hong, W. P.; Lee, K. J.. Synthesis, 2005, 33.
- 6c Li, J.; Wang, X.; Zhang, Y.. Synlett, 2005, 1039.
- 6d Chandrasekhar, S.; Saritha, B.; Jagadeshwar, V.; Narsihmulu, C.; Vijay, D.; Sarma, G. D.; Jagadeesh, B.. Tetrahedron Lett., 2006, 47, 2981.
- 6e Liu, Y.; Xu, X.; Zheng, H.; Xu, D.; Xu, Z.; Zhang, Y.. Synlett, 2006, 571.
- 7For recent selected examples, see:
- 7a Nakamura, S.; Aoki, T.; Ogura, T.; Wang, L. B.; Toru, T.. J. Org. Chem., 2004, 69, 8916.
- 7b Pandey, G.; Gadre, S. R.. Acc. Chem. Res., 2004, 37, 201.
- 7c Khokhar, S. S.; Wirth, T.. Angew. Chem., Int. Ed., 2004, 43, 631.
- 7d Yang, M. H.; Yuan, C. Y.; Pan, Y.; Zhu, C. J.. Chin. J. Chem., 2006, 24, 669.
- 8 Rollinson, S. W.; Amos, R. A.; Katzenellenbogen, J. A.. J. Am. Chem. Soc., 1981, 103, 4114.
- 9a Nicolaou, K. C.; Pastor, J.; Barluenga, S.; Winssinger, N.. Chem. Commun., 1998, 1947.
- 9b Ruhland, T.; Andersen, K.; Pedersen, H.. J. Org. Chem., 1998, 63, 9204.
- 9c Uehlin, L.; Wirth, T.. Org. Lett., 2001, 3, 2931.
- 9d Fujita, K. I.; Hashimoto, S.; Oishi, A.; Taguchi, Y.. Tetrahedron Lett., 2003, 44, 3793.
- 9e Berlin, S.; Ericsson, C.; Engman, L.. J. Org. Chem., 2003, 68, 8386.
- 9f Cohen, R. J.; Fox, D. L.; Salvatore, R. N.. J. Org. Chem., 2004, 69, 4265.
- 10a Huang, X.; Sheng, S. R.. Tetrahedron Lett., 2001, 42, 9035.
- 10b Huang, X.; Sheng, S. R.. J. Comb. Chem., 2003, 5, 273.
- 10c Sheng, S. R.; Huang, X.. Chin. J. Chem., 2003, 21, 471.
- 10d Sheng, S. R.; Liu, X. L.; Wang, X. C.; Xin, Q.; Song, C. S.. Synthesis, 2004, 2833.
- 11 Rollinson, S. W.; Amos, R. A.; Katzenellenbogen, J. A.. J. Am. Chem. Soc., 1979, 103, 4114.
- 12According to the literature, in the 1H NMR spectrum of a trisubstituted alkene the β-vinylic protons, cis and trans to the ester group are known to resonate at δ=7.5 and δ=6.5, respectively, when the alkene is substituted by an aryl group; while the same protons cis and trans to the ester group appear at δ=6.8 and δ=5.7, respectively, when the alkene is substituted by an alkyl group. See:
- 12a Larson, G. L.; de Kaifer, C. F.; Seda, R.; Torres, L. E.; Ramirez, J. R.. J. Org. Chem., 1984, 49, 3385.
- 12b Basavaiah, D.; Sarma, P. K. S.; Bhavani, A. K. D.. J. Chem. Soc., Chem. Commun., 1994, 1091.
- 12c Baraldi, P. G.; Guarneri, M.; Pollini, G. P.; Simoni, D.; Barco, A.; Benetti, S.. J. Chem. Soc., Perkin Trans. 1, 1984, 2501.
- 12d Tanaka, K.; Yamagishi, N.; Tanikaga, R.; Kaji, A.. Bull. Chem. Soc. Jpn., 1983, 56, 528.
- 13 Petragnani, N.; Rerraz, H. M. C.. Synthesis, 1978, 476.