Theoretical Study of Remote Substituent Effects on X–H(X=CH2, NH, O) Bond Dissociation Energies of Azulene
Yi-Yun Yu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorLei Liu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorQing-Xiang Guo
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorYi-Yun Yu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorLei Liu
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorQing-Xiang Guo
Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
Search for more papers by this authorAbstract
In the study, the X–H (XCH2, NH, O) bond dissociation energies (BDE) of para-substituted azulene (Y-C10H8X-H) were predicted theoretically for the first time using Density Functronal Theory (DFT) methods at UB3LYP/6-311++g(2df,2p)// UB3LYP/6-31+g(d) level. It was found that the substituents exerted similar effects on the X–H BDE of azulene as those on benzene, except for 6-substituted 2-methylazulene. Owing to the substituent-dipole interaction, the reaction constants (ρ+) of 2- and 6-Y-C10H8X-H (XNH and O only) varied violently. The origin of the substituent effects on the X–H BDE of azulene was found, by both GE/RE and SIE theory, to be directly associated with variation of the radical effects, although the ground effects also played a modest role in determining the net substituent effects.
REFERENCES
- 1 Ingold, K. U.; Wright, J. S.. J. Chem. Educ., 2000, 77, 1062.
- 2a Laarhoven, L. J. J.; Mulder, P.; Wayner, D. D. M.. Acc. Chem. Res., 1999, 32, 342.
- 2b Blanksby, S. J.; Ellison, G. B.. Acc. Chem. Res., 2003, 36, 255.
- 2c Zhu, X. Q.; Yang, Y.; Zhang, M.; Cheng, J. P.. J. Am. Chem. Soc., 2004, 126, 6833.
- 2d Zhu, X. Q.; Yang, Y.; Zhang, M.; Cheng, J. P.. J. Am. Chem. Soc., 2003, 125, 15298.
- 2e Zhu, X. Q.; Hao, W. F.; Tang, H.; Wang, C. H.; Cheng, J. P.. J. Am. Chem. Soc., 2005, 127, 2696.
- 3a Froese, R. D. J.; Morokuma, K.. J. Phys. Chem. A, 1999, 103, 4580.
- 3b Wu, Y. D.; Wong, C. L.. J. Org. Chem., 1995, 60, 821.
- 3c Parkinson, C. J.; Mayer, P. M.; Radom, L.. J. Chem. Soc., Perkin Trans. 2, 1999, 2305.
- 3d Qi, X. J.; Feng, Y.; Liu, L.; Guo, Q. X.. Chin. J. Chem., 2005, 23, 194.
- 3e Clark, K. B.; Wayner, D. D. M.. J. Am. Chem. Soc., 1991, 113, 9363.
- 3f Fu, Y.; Dong, X. Y.; Wang, Y. M.; Liu, L.; Guo, Q. X.. Chin. J. Chem., 2005, 23, 474.
- 3g Sun, Y. M.; Zhang, H. Y.; Chen, D. Z.. Chin. J. Chem., 2001, 19, 657.
- 4a Cheng, Y. H.; Fu, Y.; Liu, L.; Guo, Q. X.. Chin. J. Chem., 2003, 21, 1433.
- 4b Song, K. S.; Liu, L.; Guo, Q. X.. J. Org. Chem., 2003, 68, 262.
- 4c Fu, Y.; Liu, L.; Lin, B. L.; Mou, Y.; Cheng, Y. H.; Guo, Q. X.. J. Org. Chem., 2003, 68, 4657.
- 4d Fu, Y.; Lin, B. L.; Song, K. S.; Liu, L.; Guo, Q. X.. J. Chem. Soc., Perkin Trans. 2, 2002, 1223.
- 4e Pratt, D. A.; Dilabio, G. A.; Mulder, P.; Ingold, K. U.. Acc. Chem. Res., 2004, 37, 334.
- 4f Pratt, D. A.; DiLabio, G. A.; Valgimigli, L.; Pedulli, G. F.; Ingold, K. U.. J. Am. Chem. Soc., 2002, 124, 11085.
- 4g Pratt, D. A.; Wright, J. S.; Ingold, K. U.. J. Am. Chem. Soc., 1999, 121, 4877.
- 4h Pratt, D. A.; de Heer, M. I.; Mulder, P.; Ingold, K. U.. J. Am. Chem. Soc., 2001, 123, 5518.
- 4i Bordwell, F. G.; Liu, W. Z.. J. Phys. Org. Chem., 1998, 11, 397.
- 4j Zhang, H. Y.; Sung, Y. M.; Wang, X. L.. Chem. Eur. J., 2003, 9, 502.
- 4k Kong, L.; Wang, L. F.; Zhang, H. Y.. J. Mol. Struct. (THEOCHEM), 2005, 716, 27.
- 5a Cao, C. Z.; Lin, Y. B.. Chin. J. Org. Chem., 2003, 23, 207 (in Chinese).
- 5b Cao, C. Z.; Yuan, H.. J. Chem. Inf. Comput. Sci., 2003, 43, 600.
- 5c Cao, C. Z.; Gao, S.. Acta Phys.-Chim. Sin., 2005, 21, 1028 (in Chinese).
- 6a Barckholtz, C.; Barckholtz, T. A.; Hadad, C. M.. J. Am. Chem. Soc., 1999, 121, 491.
- 6b Bauschlicher, C. W.; Langhoff, S. R.. Mol. Phys., 1999, 96, 471.
- 7 Von RaguéSchleyer, P.. Chem. Rev., 2001, 101, 1115.
- 8a Kurotobi, K.; Tabata, H.; Miyauchi, M.; Mustafizur, R.; Migita, K.; Murafuji, T.; Sugihara, Y.; Shimoyama, H.; Fujimori, K.. Synthesis, 2003, 30.
- 8b Iwama, N.; Kashimoto, M.; Ohtaki, H.; Kato, T.; Sugano, T.. Tetrahedron Lett., 2004, 45, 9211.
- 8c Yokoyama, R.; Ito, S.; Okujima, T.; Kubo, T.; Yasunami, M.; Tajiri, A.; Morita, N.. Tetrahedron, 2003, 59, 8191.
- 8d Kurotobi, K.; Miyauchi, M.; Takakura, K.; Murafuji, T.; Sugihara, Y.. Eur. J. Org. Chem., 2003, 3663.
- 8e Yokoyama, R.; Ito, S.; Watanabe, M.; Harada, N.; Kabuto, C.; Morita, N.. J. Chem. Soc., Perkin Trans. 1, 2001, 2257.
- 8f Huang, T. C.; Lin, Y. S.; Lin, S. J.; Chu, S. F.. J. Chin. Chem. Soc., 1996, 43, 41.
- 9a Bolton, R.; Pilgrim, A. J.. Aust. J. Chem., 1993, 46, 1119.
- 9b Ito, S. J.; Okujima, T.; Morita, N.. J. Chem. Soc., Perkin Trans. 1, 2002, 1896.
- 9c Makosza, M.; Osinski, P. W.; Ostrowski, S.. Pol. J. Chem., 2001, 75, 275.
- 9d Yokota, M.; Koyama, R.; Hayashi, H.; Uchibori, S.; Tomiyama, T.; Miyazaki, H.. Synthesis, 1994, 1418.
- 10a Ito, S.; Morita, N.; Kubo, T.. J. Synth. Org. Chem. Jpn., 2004, 62, 766.
- 10b Ito, S.; Yokoyama, R.; Okujima, T.; Terazono, T.; Kubo, T.; Tajiri, A.; Watanabe, M.; Morita, N.. Org. Biochem. Chem., 2003, 1, 1947.
- 10c Lin, Y. S.; Lin, S. J.; Jiang, S. Y.; Huang, T. C.; Huang, C. Y.; Kurihara, T.; Mori, A.; Morita, T.; Takeshita, H.; Nozoe, T.. Bull. Chem. Soc. Jpn., 2000, 73, 2793.
- 10d Estdale, S. E.; Brettle, R.; Dunmur, D. A.; Marson, C. M.. J. Mater. Chem., 1997, 7, 391.
- 10e Hussain, Z.; Hopf, H.; Pohl, L.; Rantanen, T.. Synth. Commun., 2006, 36, 559.
- 10f Cristian, L.; Sasaki, I.; Lacroix, P. G.; Donnadieu, B.. Chem. Mater., 2004, 16, 3543.
- 10g Liu, R. S. H.; Muthyala, R. S.; Wang, X. S.; Asato, A. E.; Wang, P.; Ye, C.. Org. Lett., 2000, 2, 269.
- 10h Redl, F. X.; Kothe, O.; Rockl, K.; Bauer, W.; Daub, J.. Macromol. Chem. Phys., 2000, 201, 2091.
- 10i Becker, D. A.. Cell. Mol. Life Sci., 1999, 56, 626.
- 10j Becker, D. A.; Ley, J. J.; Echegoyen, L.; Alvarado, R.. J. Am. Chem. Soc., 2002, 124, 4678.
- 10k Teufel, D. R.. Int. J. Toxicol., 1999, 18, 27.
- 10l Wang, L.; Yan, H.; Wang, S. G.; Cohly, H.; Fu, P. P.; Hwang, H. M.; Yu, H. T.. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2004, 562, 143.
- 11 Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.; Vreven, J. T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision C. 02, Gaussian, Inc., Wallingford CT, 2004.
- 12a Brown, H. C.; Okamoto, Y.. J. Am. Chem. Soc., 1958, 80, 4979.
- 12b Cao, C. Z., Substituent Effects in Organic Chemistry, Science Press, Beijing, 2003, pp. 69–98 (in Chinese).
- 13 Liu, L.; Fu, Y.; Liu, R.; Li, R. Q.; Guo, Q. X.. J. Chem. Inf. Comput. Sci., 2004, 44, 652.