Theoretical Study on One- and Two-Photon Absorption Properties of PPV Derivative with Electron-Donor Phenylanthracene as Pendent Group
Liang Zhao
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorLi Mu
College of Environment Ecosystem and Engineering, Changchun University, Changchun, Jilin 130022, China
Search for more papers by this authorGuo-Chun Yang
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChun-Sheng Qin
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChen Shao
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorLiang Zhao
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorLi Mu
College of Environment Ecosystem and Engineering, Changchun University, Changchun, Jilin 130022, China
Search for more papers by this authorGuo-Chun Yang
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChun-Sheng Qin
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorChen Shao
Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, China
Search for more papers by this authorAbstract
Based on the equilibrium structures from quantum mechanics AM1 method, employing INDO/CI method and the sum-over-state (SOS) formula, the one-photon absorption (OPA) and two-photon absorption (TPA) properties as well as the second hyperpolarizabilities were discussed in detail for a kind of PPV derivative poly 2-(9-phenylan- thracen-10-yl)-1,4-phenylenevinylene (P1). The results indicate that the two-photon cross section (δ) increases with the increasing of the number of repeating segment (n), however only a slight increase corresponds to the increasing of molecular weight when the repeating unit number arrives at a certain number. From this point of view, the TPA cross section values of P1 were extrapolated through the linear fit of δ value vs. 1/n. The δ value of P1 is as high as 181 GM (1 GM10−50 cm4·s·photon−1). Concerning the influence of pendent group and extension of π-conjuga- tion on δ values, another four oligomers P2, PPV, P1-1, and P2-1 were investigated for comparison. The calculation results reveal that the position and property of pendent group have great influence on the OPA and TPA properties. A most crucial role for relatively larger δ value was played by the extension of π-conjugation.
REFERENCES
- 1 Mukherjee, A.. Appl. Phys. Lett., 1993, 622, 3423.
- 2 Bhawalkar, J. D.; Kumar, N. D.; Zhao, C. F.; Prasad, P. N.. J. Clin. Med. Surg., 1997, 37, 510.
- 3 He, G. S.; Xu, G. C.; Prasad, P. N.; Reinhardt, B. A.; Bhatt, J. C.; Dillard, A. G.. Opt. Lett., 1995, 20, 435.
- 4 Cumpston, B. H.; Ananthavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I. Y. S.; McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X. L.; Marder, S. R.; Perry, J. W.. Nature, 1999, 398, 51.
- 5 Reinhardt, B. A.; Brott, L. L.; Clarson, S. J.; Dillard, A. G.; Bhatt, J. C.; Kannan, R.; Yuan, L.; He, G. S.; Prasad, P. N.. Chem. Mater., 1998, 10, 1863.
- 6 Albota, M.; Beljonne, D.; Bredas, J. L.; Ehrlich, J. E.; Fu, J. Y.; Heikel, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCordMaughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X. L.; Xu, C.. Science, 1998, 281, 1653.
- 7 Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J. L.. J. Am. Chem. Soc., 2000, 122, 9500.
- 8 Ventelon, L.; Moreaux, L.; Mertz, J.; Blanchard-Desce, M.. Chem. Commun., 1999, 2055.
- 9 Kotler, Z.; Segal, J.; Sigalov, M.; Ben-Asuly, A.; Khodorkovsky, V.. Synth. Met., 2000, 115, 269.
- 10
Ventelon, L.;
Charier, S.;
Moreaux, L.;
Mertz, J.;
Blanchard-Desce, M..
Angew. Chem., Int. Ed.,
2001,
40,
2098.
10.1002/1521-3773(20010601)40:11<2098::AID-ANIE2098>3.0.CO;2-0 CAS PubMed Web of Science® Google Scholar
- 11 Zojer, E.; Beljonne, D.; kogej, T.; Vogel, H.; Marder, S. R.; Perry, J. W.; Bredas, J. L.. J. Chem. Phys., 2002, 116, 3646.
- 12 Asselberghs, I.; Hennrich, G. .; Clays, K.. J. Phys. Chem. A, 2006, 110, 6271.
- 13 Cho, B. R.; Son, K. H.; Sang, H. L.; Song, Y. S.; Lee, Y. K.; Jeon, S. J.; Choi, J. H; Lee, H; Cho, M.. J. Am. Chem. Soc., 2001, 123, 10039.
- 14 Beljonne, D.; Wenselers, W.; Zojer, E.; Shuai, Z.; Vogel, H.; Pond, S. J. K.; Perry, J. W.; Marder, S. R.; Bredas, J. L.. Adv. Funct. Mater., 2002, 12, 631.
- 15 Cui, Y. Z; Fang, Q.; Xue, G.; Xu, G. B.; Yu, W. T.; Yin, L.. Acta Chim. Sinica, 2005, 63, 1421 (in Chinese).
- 16 Morel, Y.; Irimia, A.; Najechalski, P.; Kervella, Y.; Stephan, O.; Baldeck, P. L.; Andruad, C.. J. Chem. Phys., 2001, 114, 5391.
- 17 Najechalski, P.; Morel, Y.; Stephan, O.; Baldeck, P. L.. Chem. Phys. Lett., 2001, 343, 44.
- 18 Li, X. D.; Cheng, W. D.; Wu, D. S.; Lan, Y. Z.; Zhang, H.; Gong, Y. J.; Li, F. F.; Shen, J.. J. Phys. Chem. B, 2005, 109, 5574.
- 19 Li, X. D.; Cheng, W. D.; Wu, D. S.; Lan, Y. Z.; Zhang, H.; Gong, Y. J.; Li, F. F.; Shen, J. J.. J. Chem. Phys., 2004, 121, 5885.
- 20 Zhou, X.; Ren, A. M.; Feng, J. K.. J. Mol. Struct. (THEOCHEM), 2004, 680, 237.
- 21 Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L.. J. Phys. Chem. B, 2005, 109, 7223.
- 22 Drobizhev, M.; Stepanenko, Y.; Dzenis, Y.; Karotki, A.; Rebane, A.; Taylor, P. N.; Anderson, H. L.. J. Am. Chem. Soc., 2004, 126, 15352.
- 23 Rubio-Pons, O.; Luo, Y.; Agren, H.. J. Chem. Phys., 2006, 124, 094310.
- 24 Pond, S. J. K.; Rumi, M.; Levin, M. D.; Parker, T. C.; Beljonne, D.; Day, M. W.; Bredas, J. L.; Marder, S. R.; Perry, J. W.. J. Phys. Chem. A, 2002, 106, 1470.
- 25 Luo, Y.; Pons, O. R.; Guo, J. D.; Ågren, H.. J. Chem. Phys., 2005, 122, 096101.
- 26 Nalwa, H. S.; Kasai, H.; Okada, S.; Oikawa, H.; Matsuda, H.; Kakuta, A.; Mukoh, A.; Nakanishi, H.. Adv. Mater., 1993, 5, 758.
- 27 Jin, J. I.; Lee, Y. H.; Shim, H. K.. Macromolecules, 1993, 261805.
- 28 Gustafsson, G.; Gao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, N.; Heeger, A. J.. Nature, 1992, 357, 477.
- 29 Marsella, M. J.; Fu, D. K.; Swager, T. M.. Adv. Mater., 1995, 7, 145.
- 30 Hagler, T. W.; Pakbaz, K.; Heeger, A. J.. Phys. Rev. B, 1994, 49, 10968.
- 31 Mathy, A.; Eberhofen, K.; Schenk, R.; Gregorius, H.; Garay, R.; Mullen, K; Bubeck, C.. Phys. Rev. B, 1996, 53, 4367.
- 32 Martin, S. J.; Bradley, D. D. C.; Lane, P. A; Mellor, H.; Burn, P. L.. Phys. Rev. B, 1999, 59, 15133.
- 33 Farinola, G. M.; Babudri, F.; Naso, F.; Dubitsky, Y.; Zaopo, A.; Amore, F. D'.; Pietralunga, S. M.. Synt. Met., 2003, 137, 1473.
- 34 Manjari, L. N.; Deepak, K.; Mukesh, P. J.; Prasad, P. N.. Chem. Mater., 1998, 10, 1065.
- 35 Shoute, L. C. T.; Blanchard-Desce, M.; Kelley, A. M.. J. Phys. Chem. A, 2005, 109, 10503.
- 36 Zhou, X.; Ren, A. M.; Feng, J. K.; Liu, X. J.. Chem. Phys. Lett., 2004, 385, 149.
- 37 Norman, P.; Luo, Y.; Ågren, H.. Chem. Phys. Lett., 1998, 296, 8.
- 38 Chung, S. J.; Maciel, G. S.; Pudavar, H. E.; Lin, T. C.; He, G. S.; Swiatkiewicz, J.; Prasad, P. N.. J. Phys. Chem. A, 2002, 106, 7512.
- 39 Shen, Y. R., The Principles of Nonlinear Optics, Wiley, New York, 1984.
- 40 Orr, B. J.; Ward, J. F.. Mol. Phys., 1971, 20, 513.
- 41 Meath, W. J.; Power, E. A.. J. Phys. B: At. Mol. Phys., 1984, 17, 763.
- 42 Yu, J. S. K.; Chen, W. C.; Yu, C. H.. J. Phys. Chem. A, 2003, 107, 4268.