Hydrogen Bonding Interaction of Formic Acid-, Formaldehyde-, Formylfluoride-Nitrosyl Hydride: Theoretical Study on the Geometries, Interaction Energies and Blue- or Red-Shifted Hydrogen Bonds
Ying Liu
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Tel.: 0086-0551-5591550; Fax: 0086-0551-5591572
Search for more papers by this authorWen-Qing Liu
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Search for more papers by this authorHai-Yang Li
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
Search for more papers by this authorYong Yang
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Search for more papers by this authorShuang Cheng
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Search for more papers by this authorYing Liu
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Tel.: 0086-0551-5591550; Fax: 0086-0551-5591572
Search for more papers by this authorWen-Qing Liu
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Search for more papers by this authorHai-Yang Li
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
Search for more papers by this authorYong Yang
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Search for more papers by this authorShuang Cheng
Key Laboratory of Environmental Optical & Technology, Anhui Institute of Optics & Fine Mechanics, Chinese Academy of Sciences, Hefei, Anhui 230031, China
Graduate School of Chinese Academy of Sciences, Beijing 100039, China
Search for more papers by this authorAbstract
The hydrogen bonding interaction of formic acid-, formaldehyde-, formylfluoride-nitrosyl hydride complexes was investigated by the density functional theory (DFT) and ab inito method in conjunction with 6-311++G(2d,2p) basis set. The geometries, vibrational frequencies and interaction energies of the complexes were calculated by both standard and CP-corrected methods respectively. Moreover, G3B3 method was employed to estimate the interaction energies. There are C–H···O, N–H···O, N–H···F blue-shifted H-bonds and red-shifted O–H···O H-bond in the complexes. Electron density redistribution and rehybridization contribute to the N–H and C–H blue shifts. All geometric reorganizations contribute to the N–H blue shifts and partial geometric reorganizations contribute to the C–H blue shifts. The geometric reorganizations of the complex C except (H(5)-O(4)-C(1) contribute to the O–H red shift. For the N–H blue shifts, the effect of r(N–O) variation on the N–H blue shifts is larger than that of (H-N-O variation. Rehybridization plays a dominant role in the degree of N–H blue shifts, whereas the electron density redistribution contributes more to the degree of C–H blue shifts than the other effects do.
REFERENCES
- 1
Scheiner, S., Hydrogen Bonding, Oxford University Press, New York, 1997.
10.1093/oso/9780195090116.001.0001 Google Scholar
- 2 Karpfen, A.. Adv. Chem. Phys., 2002, 123, 469.
- 3 Dannenberg, J. J.. J. Mol. Struct., 2002, 615, 219.
- 4 Hobza, P.. Int. J. Quantum Chem., 2002, 90, 1071.
- 5 Jeffery, P. G. A., An Introduction to Hydrogen Bonding, Oxford University Press, New York, 1997.
- 6 Hobza, P.; Špirko, V.. Phys. Chem. Chem. Phys., 2003, 5, 1290.
- 7 Mrázková, E.; Hobza, P.. J. Phys. Chem. A, 2003, 107, 1032.
- 8 Karpfen, A.; Kryachko, E. S.. J. Phys. Chem. A, 2003, 107, 9724.
- 9 Kryachko, E. S.; Zeegers-Huyskens, T.. J. Phys. Chem. A, 2001, 105, 7118.
- 10 McDowell, S. A. C.. J. Chem. Phys., 2003, 119, 3711.
- 11 Gong, X. L.; Zhou, Z. Y.; Zhang, H.; Liu, S. Z.. J. Mol. Struct. (Theochem.), 2005, 718, 23.
- 12 Li, J.; Xie, D. Q.; Yan, G.. Sci. China, Ser. B, 2003, 33, 21.
- 13 Yang, Y.; Zhang, W. J.; Gao, X. M.. Int. J. Quantum Chem., 2006, 106, 1199.
- 14 Yang, Y.; Zhang, W. J.; Pei, S. X.; Shao, J.; Huang, W.; Gao, X. M.. J. Mol. Struct. (Theochem.), 2005, 732, 33.
- 15 Masunov, A.; Dannenberg, J. J.; Contreras, R. H.. J. Phys. Chem. A, 2001, 105, 4737.
- 16 Li, X. S.; Liu, L.; Schlegel, H. B.. J. Am. Chem. Soc., 2002, 124, 9639.
- 17 Lu, P.; Liu, G. Q.; Li, J. C.. J. Mol. Struct. (Theochem.), 2005, 723, 95.
- 18 Hobza, P.; Havlas, Z.. Chem. Rev., 2000, 100, 4253.
- 19 Kurosaki, Y.; Yokoyama, K.; Teranishi, Y.. Chem. Phys., 2005, 308, 325.
- 20 Georges, R.; Freytes, M.; Hurtmans, D.; Kleiner, I.; Auwera, J. V.; Herman, M.. Chem. Phys., 2004, 305, 187.
- 21 Pettersson, M.; Maçóas, E. M. S.; Khriachtchev, L.; Fausto, R.; Räsänen, M.. J. Am. Chem. Soc., 2003, 125, 4058.
- 22 Lovas, F. J.; Suenram, R. D.; Coudert, L. H.; Blake, T. A.; Grant, K. J.; Novick, S. E.. J. Chem. Phys., 1990, 92, 891.
- 23 George, L.; Sander, W.. Spectrochim. Acta A, 2004, 60, 3225.
- 24 Roy, A. K.; Thakkar, A. J.. Chem. Phys. Lett., 2004, 386, 162.
- 25 Wawrzyniak, P. K.; Panek, J.; Latajkaa, Z.; Lundell, J.. J. Mol. Struct., 2004, 704, 297.
- 26 Gómez Marigliano, A. C.; Varetti, E. L.. J. Phys. Chem. A, 2002, 106, 1100.
- 27 Sim, F.; St-Amant, A.; Papai, I.; Salahub, D. R.. J. Am. Chem. Soc., 1992, 114, 4391.
- 28 Boys, S. F.; Bernardi, F.. Mol. Phys., 1970, 100, 65.
- 29 Reed, A. E.; Curtiss, L. A.; Weinhold, F.. Chem. Rev., 1988, 88, 899.
- 30
Bader, R. F. W., Atoms in Molecules: A Quantum Theory, Oxford University Press, Oxford, 1990.
10.1093/oso/9780198551683.001.0001 Google Scholar
- 31 Frisch, M. J.; Truck, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A.Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., Gaussian 03, Revision B. 02, Gaussian, Pittsburgh PA, 2003.
- 32 Harmony, M. D.; Laurie, V. W.; Kuczkowski, R. L.; Shwendeman, R. H.; Pansay, D. A.; Lovas, F. J.; Lafferty, W. J.; Maki, A. G.. J. Phys. Chem. Ref. Data, 1979, 8, 619.
- 33 Almenningen, A.; Bastiansen, O.; Motzfeldt, T.. Acta Chem. Scand., 1969, 23, 2848.
- 34 Bende, A.; Suhai, S.. Int. J. Quantum Chem., 2005, 103, 841.
- 35 Caroll, M. T.; Bader, R. F. W.. Mol. Phys., 1988, 65, 695.
- 36 Caroll, M. T.; Bader, R. F. W.. Mol. Phys., 1988, 63, 387.
- 37 Kolandaivel, P.; Nirmala, V.. J. Mol. Struct., 2004, 694, 33.
- 38 Zeng, Y. L.; Zheng, S. J.; Meng, L. P.; Wang, D. X.. Acta Chim. Sinica, 2004, 62, 1101 (in Chinese).
- 39 Alabugin, I. V.; Manoharan, M.; Peabody, S.; Weinhold, F.. J. Am. Chem. Soc., 2003, 125, 5973.