Novel quasi-solid-state dye-sensitized solar cell based on monolayer capped TiO2 nanoparticles framework materials
Jiang-Bin Xia
State Key Laboratory of Rare Earth Material Chemistry and Applications, Peking University, Beijing 100871, China
Search for more papers by this authorFu-You Li
institute of Advanced Material, Fudan University, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Chun-Hui Huang
State Key Laboratory of Rare Earth Material Chemistry and Applications, Peking University, Beijing 100871, China
institute of Advanced Material, Fudan University, Shanghai 200433, China
Tel.:086-010-62757156; Fax.:086-010-62751708Search for more papers by this authorJiang-Bin Xia
State Key Laboratory of Rare Earth Material Chemistry and Applications, Peking University, Beijing 100871, China
Search for more papers by this authorFu-You Li
institute of Advanced Material, Fudan University, Shanghai 200433, China
Search for more papers by this authorCorresponding Author
Chun-Hui Huang
State Key Laboratory of Rare Earth Material Chemistry and Applications, Peking University, Beijing 100871, China
institute of Advanced Material, Fudan University, Shanghai 200433, China
Tel.:086-010-62757156; Fax.:086-010-62751708Search for more papers by this authorAbstract
Dodecylbenzenesulfonate (DBS)-capped TiO2 nanoparticles have been synthesized and employed in dye-sensitized solar cells to form a quasi-solid state electrolyte. Owing to the long alkyl-chain capping around the TiO2 nanoparticles interacting with the liquid solvent, the dye sensitized solar cell based on such DBS-capped TiO2 nanoparticle framework material gel electrolyte shows higher stability compared with the non-capped one in the long-term application and gives a comparable overall efficiency of 6.3% at AM 1.5 illumination.
References
- 1 Oregan, B.; Gratzel, M. Nature 1991, 353, 737.
- 2 Kamat, P. V. Chem. Rev. 1993, 93, 267.
- 3 Alivisatos, A. P. J. Phys. Chem. 1996, 100, 13226.
- 4 Tnndade, T.; Obrien, P.; Pickett, N. L. Chem. Mater. 2001, 13, 3843.
- 5 Brust, M.; Walker, M.; Bethell, D.; Schffrin, D. J.; Whyman, R. J Chem. Soc., Chem. Commun. 1994, 801.
- 6 Pileni, M. P. Langmutr 1997, 13, 3266.
- 7 Antonietti, M.; Wenz, E.; Bronstein, L.; Seregina, M. Adv. Mater. 1995, 7, 1000.
- 8 Spatz, J. P.; Mossmer, S.; Möller, M. Chem Eur. J. 1996, 3, 1552.
- 9 Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Hurnphy-Baker, R.; Mueller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am Chem. Soc., 1993, 115, 6382.
- 10 Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Cornte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Beacon, G. B.; Bignoui, C. A.; Grätzel, M. J Am. Chem Soc., 2001, 123, 1613.
- 11 Wag, Z. S.; Li, F. Y.; Huang, C. H. J. Phys. Chem B 2001, 105, 9210.
- 12 Ham, K.; Kurashige, M.; Ito, S.; Shinpo, A.; Suga, S.; Sayama, K.; Arakawa, H. Chem Commun 2003, 252.
- 13 Hara, K.; Sam, T.; Katoh, R.; Furube, A.; Ohga, Y., Shinpo, A.; Suga, S.; Sayama, K.; Sugihara, H.; Arakawa, H. J. Phys. Chem B 2003, 107, 597
- 14 O'Regan, B.; Schwa, D. T. Chem Mater. 1998, 10, 1501.
- 15 Kumara, G. R. A.; Keneko, S.; Okuya, M.; Tennakone, K. Lanrmuir 2002, 18, 10493.
- 16 Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Nature 1998, 395, 583.
- 17 Cao, F.; Oskam, G.; Searson, P. C. J. Phys. Chem. 1995, 99, 17071.
- 18 Tennakone, K.; Senadeera, G. K. R.; Perera, V. P. S.; Kottegoda, I. R. M.; De Silva, L. A. A. Chem Mater. 1999, 11, 2474.
- 19 Ren, Y.; Zhang, Z.; Fang, S.; Yang, M.; Cai, S. J. Appl Elecrochem. 2001, 31, 445.
- 20 Stathatos, E.; Lianos, P.; Krontiras, C. J. Phys. Chem. B 2001, 105, 3486.
- 21 Stergiopoulos, T.; Arabatzis, I. M.; Katsaros, G.; Fularas, F. Nano Lett. 2002, 11, 1259.
- 22
Nogueira, A. F.;
Durrant, I. R.;
De Paoli, M.-A.
Adv. Mater.
2001,
13, 826.
10.1002/1521-4095(200106)13:11<826::AID-ADMA826>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 23 Wang, P.; Zakeeruddin, S. M.; Exnar, I.; Grätzel, M. I,. Chem Commun. 2002, 2972.
- 24 Stathatos, E.; Lianos, P.; Lavrencic-Stangar, U.; Orel, B. Adv. Mater. 2002, 14, 354.
- 25 Kubo, W.; Kitamura, T.; Haabusa, K.; Wada, Y.; Yanagida, S. Chem Commun. 2002, 374.
- 26 Kubo, W.; Murakoshi, K.; Kitamura, T.; Yoshida, S.; Haruki, M.; Hanabusa, K.; Shirai, H.; Wada, Y.; Yanagida, S. J. Phys. Chem. B 2001, 105, 12809.
- 27 Murai, S.; Mikoshiba, S.; Sumino, H.; Hayase, S. J. Photo-chem. Photobiol. 2002, 148, 33.
- 28 Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Grätzel, M. J. Am Chem. Soc., 2003, 125, 1166.
- 29 Bonhte, P.; Dias, A. P.; Armand, M.; Papageorgiou, N.; Kalyanasudaram, K.; Grätzel, M. Inorg. Chem. 1996, 35, 1168.
- 30 Ramakrishna, G.; Ghosh, H. N. Langmuir 2003, 19, 505.
- 31 Bahnemann, D.; Henglein, A.; Lilie, J.; Spanhel, L. J. Phys. Chem. 1984, 88, 709.
- 32 Zou, B. S.; Xiao, L. Z.; Li, T. J.; Zhao, J. L.; Lai, Z. Y.; Gu, S. W. Appl. Phys. Len. 1991, 59, 1826.