A relative study on two-photon absorption properties of C60 and C70
Xin Zhou
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorAi-Min Ren
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorJi-Kang Feng
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
College of Chemistry, Jilin University, Changchun, Jilin 130023, China
Search for more papers by this authorXiao-Juan Liu
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorXin Zhou
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorAi-Min Ren
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorJi-Kang Feng
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
College of Chemistry, Jilin University, Changchun, Jilin 130023, China
Search for more papers by this authorXiao-Juan Liu
State Key Laboratory of Theoretical and Computational Chemistry Institute of Theoretical Chemistry, Jilin University, Changchun. Jilin 130023, China
Search for more papers by this authorAbstract
We have theoretically investigated the one- and two-photon absorption properties of C60 and C70 using the ZINDO method. From the results it is suggested that the one-photon absorption spectra are in agreement with the experimental observations. It is found that the maximum TPA cross section of C70 is more than twice that of C60 which is consistent with the experimental results. A notable point is that the TPA process of C60 is different from that of C70 as well as other ordinary conjugated molecules.
References
- 1 Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
- 2 Krätchmer, W.; Lambd, L. D.; Fostiropoulos, K.; Huffman, D. R. Nature 1990, 347, 354.
- 3 Arvogast, J. N.; Darmanyan, A. P.; Foote, C. S.; Rubin, Y.; Diedelich, F. N.; Albarez, M. M.; Anz, S. J.; Whetten, R. L. J. Phys. Chem. 1991, 95, 11.
- 4 Sibley, S. D.; Argentine, S. M.; Francis, A. H. Chem. Phys. Len. 1992, 188, 187.
- 5 Bindhu, C. V.; Harilal, S. S.; Nampoori, V. P. N.; Vallabhan, C. P. G. Appl. Phys. B 2000, 70, 429.
- 6 Bhawalkar, J. D.; He, G.-S.; Prasad, P. N. Rep. Prog. Phys. 1996, 59, 1041.
- 7 He, G.-S.; Zhao, C.-F.; Bhawalkar, J. D.; Prasad, P. N. Appl. Phys. Lett. 1995, 67, 3703.
- 8 Zhao, C.-F.; He, G.-S.; Bhawalkar, J. D.; Park, C. K.; Prasad, P. N. Chem Mater. 1995, 7, 1979.
- 9 Fleitz, P. A.; Sutherland, R. A.; Stroghendl, F. P.; Larson, F. P.; Dalton, L. R. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3472, 91.
- 10 He, G.-S.; Bhawalkar, J. D.; Zhao, C.-F.; Prasad, P. N. Appl. Phys. Lett. 1995, 67, 2433.
- 11 Ehrlich, J. E.; Wu, X.-L.; Lee, I.-Y.-S.; Hu, Z.-Y.; Röeckel, H.; Marder, S. R.; Perry, J. W. Opt. Lett. 1997, 22, 1843.
- 12 Bhawalkar, J. D.; Kumar, N. D.; Zhao, C.-F.; Prasad, P. N. J. Clin. Lnser Med. Surg. 1997, 15, 201.
- 13 Denk, M.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73.
- 14 Xu, C. M. J.; Webb, W. W. Opt. Lett. 1995, 20, 2532.
- 15 Wu, E. S.; Strickler, J. H.; Harrell, W. R.; Webb, W. W. Proc. SPIE-Int. Soc. Opt. Eng. 1992, 1674, 776.
- 16 Albota, M.; Beljonne, D.; Brédas, J. L.; Ehrlich, J. E.; Fu, I.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Roeckel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.; Xu, C. Science 1998, 281, 1653.
- 17 Cheng, L.-T.; Tan, W.; Stevenson, S. H.; Meridith, G. R.; Rikken, G.; Marder, S. R. J. Phys. Chem. 1991, 95, 10631.
- 18 Albert, L. D. L.; Das, P. K.; Ramasesha, S. Chem. Phys. Lett. 1990, 168, 454.
- 19 Jain, M.; Chandrasekhar, J. J. Phys. Chem. 1993, 97, 4044.
- 20 Matsuzawa, N.; Dixon, D. A. J. Phys. Chem. 1992, 96, 6332.
- 21 Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee, Y.-K.; Jeon, S.-J.; Choi, J. H.; Lee, H.; Cho, M. J. Am. Chem. Soc. 2001, 123, 10039.
- 22 Beljonne, D.; Wenseleers, W.; Zojer, E.; Shuai, Z.-G.; Vogel, H.; Pond, S. J. Y.; Perry, J. W.; Marder, S. R.; Brédas, J.-L. Adv. Funct. Mater. 2002, 12, 631.
- 23 Dick, B.; Hochstrasser, R. M.; Trommsdorff, H. P. In Nonlinear Optical Properties of Organic Molecules and Crystals, Vol. 2, Eds.: D. S. Chemla; J. Zyss, Academic Press, Orlando, FL, 1987, pp. 167–170.
- 24 Orr, B. J.; Ward, J. F. Mol. Phys. 1971, 20, 513.
- 25 Beljonne, D.; Comil, J.; Shuai, Z.; Brédas, J. L.; Rohlfing, F.; Bradlley, D. D. C.; Torruellas, W. E.; Ricci, V.; Stegeman, G. I. Phys. Rev. B 1997, 55, 1505.
- 26 David, W. I. F.; Ibberson, R. M.; Manewman, J. C.; Prassides, K.; Dennis, T. J. S.; Hare, J. P.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Nature 1991. 12, 147.
- 27 Baker, J.; Fowler, P. W.; Lazzeretti, P.; Malagoli, M.; Zanasi, R. Chem Phys. Len. 1991, 184, 182.
- 28 Ajie, H.; Alvarez, M. M.; Anz, S. J.; Beck, R. D.; Diederich, F.; Fostiropoulos, K.; Huffman, D. R.; Kratschmer, W.; Rubin, Y.; Schriver, K. E.; Sensharma, D.; Whetten, R. L. J. Phys. Chem. 1990. 94, 8630.
- 29 Li, J.; Feng, J.-K.; Sun, J.-Z. Chem. Phys. Lett 1993, 203, 560.
- 30 Couris, S.; Koudoumas, E.; Ruth, A. A.; Leach, S. J. Phys. B: At., Mol. Opt. Phys. 1995, 28, 4537.
- 31 Strohkendl, F. P.; Axenson, T. J.; Larsen, R. J.; Dalton, L. R.; Hellwarth, R. W.; Kafafi, Z. H. J. Phys. Chem. B 1997, 101, 8802.
- 32 Wang, Y.; Cheng, L. J. Phys. Chem. 1992. 96, 1530.
- 33 Moore, C. E.; Cardelino, B. H.; Wang, X. J. Phys. Chem. 1996, 100, 4685.