Synthesis of Distamycin Analogs and Their Interactions with Calf Thymus DNA
Jun-Hua Xiao
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorGu Yuan
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorWei-Qiang Huang
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorWei-Hong Du
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorBao-Huai Wang
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorZhi-Fen Li
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorJun-Hua Xiao
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorGu Yuan
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorWei-Qiang Huang
Department of Chemistry, Laboratory of Bioorganic and Molecular Engineering, Peking University, Beijing 100871, China
Search for more papers by this authorWei-Hong Du
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorBao-Huai Wang
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorZhi-Fen Li
Institute of Physical Chemistry, Peking University, Beijing 100871, China
Search for more papers by this authorAbstract
Two distamycin analogs (PyPyPy-γ-Dp and PyPyPyPy-γ-Dp) were synthesized by a haloform reaction and the DCC/HOBT coupling reaction in a ample and fast way without amino protection. By using calf thymus DNA, the interaction between the analogs and DNA duplex was studied by CD, and ITC.
References
- 1(a) Gottesfeld, J. M.; Neely, L; Trauger, J. W; Baird, E. E.; Dervan, P. B., Nature 1997, 387, 202. (b) Xiao, J. H.; Huang, W. Q.; Tang, F. L.; Yuan, C; Chan, A. S. C.; Lee, K. L. D., Chin. J. Chem. 2000, 18, 603.
- 2(a) Strobel, S. A; Dervan, P. B., Science 1990, 249, 73. (b) Dervan, P. B., Nature 1992, 359, 87.
- 3(a) Nielsen, P. E; Egholm, M; Berg, R. H.; Buchardt, O., Science 1991, 254, 1497. (b) Hyrup, B; Nielsen, P. E., Bioorg. Med. Chem. 1996, 4, 5.
- 4(a) Nicolaou, K. C; Ajito, K; Komatus, H; Smith, B. M.; Li, T. H.; Egan, M. G; Gomezpaloma, L., Angew. Chem. Int. Ed. Engl. 1995, 34, 576. (b) Kahne, D., Chem. Biol. 1995, 2, 7.
- 5(a) White, S; Szewczyk, J. W; Turner, J. M.; Baird, E. E; Dervan, P. B., Nature 1998, 391, 468. (b) Kielkopf, C. L; White, S; Szewczyk, J. W; Turner, J. M; Baird, E. E.; Dervan, P. B., Science 1998, 282, 111.
- 6(a) Arcamone, F; Penco, S; Orezzi, P. R.; Nicolella, Y; Pirelli, A., Nature 1964, 1203, 1064. (b) Nishiwaki, E; Tanaka, S; Lee, H; Shibuya, M., Heterocycles 1988, 27, 1945.
- 7 Coll, M; Frederick, C. A.; Wang, A. H. J.; Rich, A., Proc. Natl. Acad. Sci. USA 1987, 84, 8385.
- 8 Blasko, A; Bruice, T. C., Proc. Natl. Acad. Sci. USA 1993, 90, 10018.
- 9 Schultz, P. C.; Dervan, P. B., J. Biomol. Struct. Dyn. 1984, 1, 1133.
- 10 Parks, M. E; Baird, E. E.; Dervan, P. B., J. Am. Chem. Soc. 1996, 118, 6147.
- 11 The spectral data of 11 are: IR v: 3302, 2941, 1640, 1541, 1466, 1438, 1415, 1255, 1207, 1114, 1063, 740 cm−1. 1H NMR(200 MHz, CDCl3) δ: 10.85 (s, 1H), 8.97 (s, 1H), 8.88 (s, 1H), 8.15 (s, 1H), 7.40 (s, 1H), 7.34 (s, 1H), 7.06 (s, 1H), 6.97 (s, 1H), 6.91 (s, 1H), 6.71 (s, 1H), 6.05 (s, 1H), 3.95 (s, 3H), 3.88 (s, 3H), 3.80 (s, 3H), 3.36–3.29 (m, 4H), 3.03 (s, 2H), 2.70 (s, 6H), 2.45–2.37 (m, 4H), 1.95–1.90 (m, 2H), 1.28–1.25 (m, 2H). HRMS (C27H39N8O4)+ Calcd m/z: 539.3089 (M+H). Found m/z: 539.3072. The spectral data of 12 are: IR v: 3290, 2936, 1642, 1538, 1466, 1435, 1406, 1254, 1204, 1109, 1061, 739 cm−1. 1H NMR (200 MHz, CDCl3) δ: 8.90 (s, 2H), 8.51 (s, 1H), 7.52 (s, 1H), 7.31 (s, 1H), 7.27 (s, 2H), 7.16 (s, 1H), 6.91 (s, 1H), 6.84 (s, 1H), 6.73 (s, 1H), 6.68 (s, 2H), 6.03 (s, 1H), 3.92 (s, 3H), 3.83 (s, 3H), 3.78 (s, 3H), 3.73 (s, 3H), 3.38–3.24 (m, 2H), 3.21–3.10 (m, 2H), 3.08–2.90 (m, 2H), 2.40–2.28 (m, 2H), 2.19 (s, 6H), 1.85–1.72 (m, 2H), 1.62–1.50 (m, 2H). HRMS (C33H45N10O5)+ Calcd m/z: 661.3569 (M + H). Found m/z: 661.3590 (M + H).
- 12 Pilch, D. S; Poklar, N; Baird, E. E; Dervan, P. B.; Breslauer, K. J., Biochemistry 1999, 38, 2143.