Valence bond description for structures of O3, SO2 and NO
Wei Wu
Department of Chemistry, Xiamen University, Xiamen 361005
Search for more papers by this authorCorresponding Author
Yi-Rong Mo
Department of Chemistry, Xiamen University, Xiamen 361005
Department of Chemistry, Xiamen University, Xiamen 361005Search for more papers by this authorQian-Er Zhang
Department of Chemistry, Xiamen University, Xiamen 361005
Search for more papers by this authorWei Wu
Department of Chemistry, Xiamen University, Xiamen 361005
Search for more papers by this authorCorresponding Author
Yi-Rong Mo
Department of Chemistry, Xiamen University, Xiamen 361005
Department of Chemistry, Xiamen University, Xiamen 361005Search for more papers by this authorQian-Er Zhang
Department of Chemistry, Xiamen University, Xiamen 361005
Search for more papers by this authorAbstract
A modern valence bond approach, namely bonded tableau unitary group approach, is applied to ozone, sulphur dioxide and nitrite systems, respectively. It is shown that the biradical structure is in the primary position in describing the molecular structure of ozone. Thus three instead of two resonance structures are needed to describe the ground state of ozone. The case of sulphur dioxide is similar to that of ozone. It is found that, however, for the nitrite anion four resonance structures are needed.
References
- 1 JANAF Thermochemical Tables, J. Phys. Chem. Ref. Data (Am. Chem. Soc. and Am. Inst. Phys. for U.S. Nat. Bur. Standards), Vol. 14, Suppl: 1, 1985.
- 2 Herzberg, G., Molecular Spectra and Molecular Structure: III. Electronic Spectra and Electronic Structure of Polyatomic Molecules, Van Nostrands, New York, 1966.
- 3 Kirchhoff, W.H., J. Mol. Spectrosc., 41, 333 (1972).
- 4 Wright, J.S., Can. J. Chem., 51, 139 (1973).
- 5 Shih, S; Buenker, R.J; Peyerimhoff, S.D., Chem. Phys. Lett., 28, 463 (1974).
- 6 Hay, P.J; Dunning Jr., T.H; Goddard III, W.A., J. Chem. Phys., 62, 3912 (1975).
- 7 Harding, L.B; Goddard III, W.A., J. Chem. Phys., 67, 2377 (1977).
- 8 Lucchese, R.R; Schaefer III, H.F., J. Chem. Phy., 67, 848 (1977).
- 9 Dunning, T.H; Hay, P.J., J. Chem. Phys., 67, 2290 (1977).
- 10 Karlström, G; Engström, S; Jönsson, B., Chem. Phys. Lett., 57, 390 (1978).
- 11 Burton, P.G., J. Chem. Phys., 71, 961 (1979).
- 12 Wilson Jr., C.W; Hopper, D.G., J. Chem. Phys., 74, 595 (1981).
- 13 Jones, K.O., J. Chem. Phys., 82, 325 (1985).
- 14 Moscarao, F; Andarias, R; San-Fabian, E., Int. J. Quantum. Chem., 34, 375 (1988).
- 15 Lee, T.J., J. Chem. Phys., 93, 489 (1990). Chem. Phys. Lett., 169, 529 (1990).
- 16 Xantheas, S.S; Atchity, G.J; Elbert, S.T; Ruedenberg, K., J. Chem. Phys., 94, 8054 (1991).
- 17 Fowles, G.W.A., J. Chem. Educ., 34, 187 (1957).
- 18 Goddard III, W.A; Dunning Jr., T.H; Hunt, W.J; Hay, P.J., Acc. Chem. Res., 6, 368 (1973).
- 19 Hay, P.J; Goddard III, W.A., Chem. Phys. Lett., 14, 46 (1972).
- 20 Hay, P.J; Dunning Jr., T.H; Goddard III, W.A., Chem. Phys. Lett., 23, 457 (1973).
- 21 Rothenberg, S; Schaefer III, H.F., J. Chem. Phys., 53, 3014 (1970).
- 22 Ross, B; Siegbahn, P., Theor. Chim. Acta, 21, 368 (1971).
- 23 Huzinaga, S; Yoshimine, M., J. Chem. Phys., 68, 4486 (1978).
- 24 Bendazzoli, G.L; Palmieri, P., Int. J. Quantum Chem., 9, 537 (1975).
- 25 Hillier, I.H; Saunders, V.R., Mol. Phys., 22, 193 (1971).
- 26 Zhang, Q; Li, X., J. Mol. Struct. (Theochem), 198, 413 (1989).
- 27 Li, X; Zhang, Q., Int. J. Quantum Chem., 36, 599 (1990).
- 28 Wu, W; Mo, Y; Zhang, Q., J. Mol. Struct. (Theochem), 283, 227 (1993).
- 29 McWeeny, R., Proc. R. Soc. London, Ser. A, 253, 242 (1959).
- 30 Mo, Y; Wu, W; Li, J; Zhang, Q., Chin. Sci. Bull., 37, 948 (1992).
- 31 Hehre, W.J; Stewart, R.F; Pople, J.A., J. Chem. Phys., 51, 2657 (1969).
- 32 Binkley, J.S; Whiteside, R.F; Krishnan, R; Schlegel, H.B; Seeger, R; DeFrees, D.J; Pople, J.A., Quantum Chemistry Program Exchange, Indiana University, Bloomington, Indiana.
- 33 Swanson, N; Celotta, R.J., Phys. Rev. Lett., 35, 783 (1975).