Two topological approaches to resonance energy and the relation between them
Corresponding Author
Gutman Ivan
Faculty of Science, University of Kragujevac, Yugoslavia
Faculty of Science, University of Kragujevac, YugoslaviaSearch for more papers by this authorYuan-Sheng Jiang
Institute of Theoretical Chemistry, Jilin University, Changchun, China
Search for more papers by this authorHong-Xing Zhang
Institute of Theoretical Chemistry, Jilin University, Changchun, China
Search for more papers by this authorCorresponding Author
Gutman Ivan
Faculty of Science, University of Kragujevac, Yugoslavia
Faculty of Science, University of Kragujevac, YugoslaviaSearch for more papers by this authorYuan-Sheng Jiang
Institute of Theoretical Chemistry, Jilin University, Changchun, China
Search for more papers by this authorHong-Xing Zhang
Institute of Theoretical Chemistry, Jilin University, Changchun, China
Search for more papers by this authorAbstract
Two of the present authors recently put forward a novel approach to resonance energy which is based on a similar topological reasoning as a previously elaborated resonance energy concept. It is shown that these two approaches are not completely equivalent. Several other properties of the new resonance energy are pointed out.
References
- 1 Breslow, R.: Mohácsi, E., J. Am. Chem. Soc. 85, 431 (1963).
- 2 Dewar, M. J. S., “The Molecular Orbital Theory of Organic Chemistry”, Chapt. 6 and 9, McGraw-Hill, New York, 1969.
- 3 Dewar, M. J. S.; de Llano, C., J. Am. Chem. Soc., 91, 789 (1969).
- 4 Hess, B. A.; Schaad, L. J., J. Am. Chem. Soc., 93, 305 (1971).
- 5
Graovac, A.:
Gutman, I.;
Trinajstic, H.,
“Topological Approach to the Chemistry of Conjugated Molecules”,
Springer-Verlag, Berlin,
1977.
10.1007/978-3-642-93069-0 Google Scholar
- 6 Tang, A. -C.; Kiang, Y. -S.; Yan, G. -S.; Tai, S. -S., “Graph Theoretical Molecular Orbital”, Science Press, Beijing, 1986.
- 7
Gutman, I.;
Polansky, O. E.,
“Mathematical Concepts in Organic Chemistry”,
Springer-Verlag, Berlin,
1986.
10.1007/978-3-642-70982-1 Google Scholar
- 8 Aihara, J., J. Amer. Chem. Soc., 98, 2750 (1976).
- 9 Gutman, I.; Milun, M.; Trinajstić, J. Am. Chem. Soc., 99, 1692 (1977).
- 10 Gutman, I., Bull. Soc. Chim. Beograd, 43, 761 (1978).
- 11 Graovac, A.; Gutman, I.; Trinajstić, N.; Živković, T., Theoret. Chim. Acta, 26, 67 (1972).
- 12 A detailed account of the theory of the matching polynomial can be found in: Cvetković, D.; Doob, M.; Gutman, I.; Torgasêv, A., “Recent Results in the Theory of Graph Spectra”, North-Holland, Amsterdam, 1988.
- 13 Godsil, C. D.; Gutman, I.; Z. Naturforsch., 34a, 776 (1979).
- 14 Gutman, I., Croat. Chem. Acta. 53, 581 (1980).
- 15 Trinajstić, K., “Chemical Graph Theory”, Vol. 2, Chapt. 1, CRC Press, Boca Raton, 1983.
- 16 Gutman, I.; Mohar, B., Chem. Phys. Letters, 69, 375 (1980).
- 17 Gutman, I., Theoret. Chim. Acta, 56, 89 (1980).
- 18 Gutman, I.; Mohar, B., Chem. Phys. Letters, 77, 567 (1981).
- 19 Herndon, W. C., J. Org. Chem., 46, 2119 (1981).
- 20 Heilbrunner, E., Chem. Phys. Letters, 85, 377 (1982).
- 21 Gutman, I., J. Chem. Soc. Faraday II. 79, 337 (1983).
- 22 Jiang, Y.; Zhang, H., Theoret. Chim. Acta, 75, 279 (1989).
- 23 Jiang, Y.; Tang, A. -C.; Hoffmann, R., Theoret. Chim. Acta, 66, 183 (1984).
- 24 Kiang, Y. -S.; Tang, A. -C., Int. J. Quantum Chem. 22, 229 (1986).
- 25 Hall, G. G., Theoret. Chim. Acta, 70, 323 (1986).
- 26 Gutman, I.; Marković, Z.; Marković, S., Chem. Phys. Letters, 134, 139 (1987).
- 27 Gutman, I.; Rosenfeld, V. R.; Marković, Z., J. Serb. Chem. Soc., 52, 139 (1987).
- 28 Harary, F., “Graph Theory”, Addison-Wesley, Reading, 1972.
- 29 Godsil, C. D., J. Graph Theory. 5, 285 (1981).