Flax nanofibrils production via supercritical carbon dioxide pre-treatment and enzymatic hydrolysis
Hervé Nlandu
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Department of Chemical Engineering, Université Laval, Québec, Canada
Search for more papers by this authorKhaled Belkacemi
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
The late professor Khaled Belkacemi passed away in the terrorist attack perpetrated at Québec City on January 29th, 2017.Search for more papers by this authorNasima Chorfa
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Search for more papers by this authorSaid Elkoun
Centre for Innovations in Technological Ecodesign, Université de Sherbrooke, Sherbrooke, Québec, Canada
Search for more papers by this authorMathieu Robert
Centre for Innovations in Technological Ecodesign, Université de Sherbrooke, Sherbrooke, Québec, Canada
Search for more papers by this authorCorresponding Author
Safia Hamoudi
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Correspondence
Safia Hamoudi, Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, G1V 0A6, Canada.
Email: [email protected]
Search for more papers by this authorHervé Nlandu
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Department of Chemical Engineering, Université Laval, Québec, Canada
Search for more papers by this authorKhaled Belkacemi
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
The late professor Khaled Belkacemi passed away in the terrorist attack perpetrated at Québec City on January 29th, 2017.Search for more papers by this authorNasima Chorfa
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Search for more papers by this authorSaid Elkoun
Centre for Innovations in Technological Ecodesign, Université de Sherbrooke, Sherbrooke, Québec, Canada
Search for more papers by this authorMathieu Robert
Centre for Innovations in Technological Ecodesign, Université de Sherbrooke, Sherbrooke, Québec, Canada
Search for more papers by this authorCorresponding Author
Safia Hamoudi
Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, Canada
Correspondence
Safia Hamoudi, Department of Soil Sciences and Agri-Food Engineering, Université Laval, Centre in Green Chemistry & Catalysis, Québec, G1V 0A6, Canada.
Email: [email protected]
Search for more papers by this authorAbstract
Flax fibres are an agro-industrial waste available in large quantities in several countries around the world. This resource can be properly used. The goal of this work was to extract lignocellulosic nanosized flax fibres using an environmentally friendly process based on a combination of supercritical carbon dioxide (SC-CO2) pre-treatment and enzymatic hydrolysis. Raw flax fibres (RFF) were submitted to a SC-CO2 pre-treatment at various temperatures (ie, 70°C and 80°C) and pressures (ie, 20 and 37.7 MPa) for 60 minutes. The enzymatic hydrolysis was performed at 40°C for 24 hours in a pH 4.0 buffer. Cellulase, xylanase, pectinase, and viscozyme were used as hydrolytic enzymes. The as-received raw flax fibres, SC-CO2 pretreated flax fibres, and extracted lignocellulosic nanofibrils (LCNF) were characterized by Fourier transformed infrared spectroscopy (FTIR), x-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). It was shown that the effect of the SC-CO2 pre-treatment of flax fibres was two-fold. It helped to disorganize biomass without changing its chemical composition and it increased access to enzymes to extract LCNF. The FTIR analysis showed no changes in the functional groups after SC-CO2 pre-treatment. The XRD characterization revealed that the crystallinity increased with the SC-CO2 pre-treatment and LCNF extraction. SEM images showed holes, cracks, and erosion on the surface of the SC-CO2 pretreated flax fibres (SC-CO2-PFF). TEM evidenced the production of nano/micro-sized fibril and fibril aggregates.
REFERENCES
- 1Y. Lin, S. Tanaka, Appl. Microbiol. Biotechnol. 2006, 69, 627.
- 2A. Ulrich, Flax in Canada: A 2007 update, Biolyn, https://www.biolin.sk.ca/pictures,%20logos,%20et/RomaniaPowerPointPresentation0705.pdf (accessed: 5 September 2018).
- 3Y. Libo, N. Chouw, J. Krishnan, Compos. Part B-Eng. 2014, 56, 296.
- 4C. L. Duarte, M. A. Ribeiro, H. Oikawa, M. N. Mori, C. M. Napolitano, C. A. Galvao, Radiat. Phys. Chem. 2012, 81, 1008.
- 5B. W. Jones, R. Venditti, S. Park, H. Jameel, Bioresources 2017, 12, 4567.
- 6M. T. Garcia-Cubero, G. Gonzalez-Benito, I. Indacoechea, M. Coca, S. Bolado, Bioresource Technol. 2009, 100, 1608.
- 7A. Garcia, C. Cara, M. Moya, J. Rapado, J. Puls, E. Castro, C. Martin, Ind. Crop. Prod. 2014, 53, 148.
- 8Z. Ji, Z. Ling, X. Zhang, G.-H. Yang, F. Xu, Bioresources 2014, 9, 4159.
- 9Z. Li, Z. Jiang, B. Fei, X. Pan, Z. Cai, X.-E. Liu, Y. Yu, Bioresources 2012, 7, 3452.
- 10J.-K. Xu, Y.-C. Sun, F. Xu, R.-C. Sun, Bioresources 2013, 8, 1946.
- 11Z. Li, B. Fei, Z. Jiang, Bioresources 2015, 10, 1037.
- 12X. Xiao, J. Bian, M.-F. Li, H. Xu, B. Xiao, R.-C. Sun, Bioresource Technol. 2014, 159, 41.
- 13N. Narayanaswamy, A. Faik, D. J. Goetz, T. Y. Gu, Bioresource Technol. 2011, 102, 6995.
- 14F. Teymouri, L. Laureano-Perez, H. Alizadeh, B. E. Dale, Appl. Biochem. Biotechnol. 2004, 113, 951.
- 15Y. Hao, Y. Chen, Q. Li, Q. Gao, Carbohydr. Polym. 2018, 184, 171.
- 16W. Wang, T. Yuan, B. Cui, Bioresources 2014, 9, 3968.
- 17D. M. de Carvalho, J. H. de Queiroz, J. L. Colodette, Bioresources 2017, 12, 3088.
- 18K. Ninomiya, M. Abe, T. Tsukegi, K. Kuroda, Y. Tsuge, C. Ogino, K. Taki, T. Taima, J. Saito, M. Kimizu, Carbohydr. Polym. 2018, 182, 8.
- 19Q. Wang, W. Wei, F. Chang, J. Sun, S. Xie, Q. Zhu, Bioresources 2016, 11, 2536.
- 20T. Zimmerman, E. Poehler, T. Geiger, Adv. Eng. Mater. 2004, 6, 754.
- 21N. Kasiri, M. Fathi, Int. J. Biol. Macromol. 2018, 106, 1023.
- 22N. A. Rosli, I. Ahmad, I. Abdullah, Bioresources 2013, 8, 1893.
- 23O. Eriksen, K. Syverud, O. Gregersen, Nord. Pulp Pap. Res. J. 2008, 23, 299.
- 24K. L. Spence, R. A. Venditti, O. J. Rojas, Y. Habibi, J. J. Pawlak, Cellulose 2011, 18, 1097.
- 25B. G. Ranby, Discuss. Faraday Soc. 1951, 11, 158.
10.1039/DF9511100158 Google Scholar
- 26B. G. Ranby, Acta Chem. Scand. 1949, 3, 649.
- 27M. Pääkkö, M. Ankerfors, H. Kosonen, A. Nykanen, S. Ahola, M. Osterberg, J. Ruokolainen, J. Laine, P. T. Larsson, O. Ikkala, T. Lindstrom, Biomacromolecules 2007, 8, 1934.
- 28G. Siqueira, S. Tapin-Lingua, J. Bras, D. D. S. Perez, A. Dufresne, Cellulose 2010, 17, 1147.
- 29M. L. Hassan, J. Bras, E. A. Hassan, C. Silard, E. Mauret, Ind. Crop. Prod. 2014, 55, 102.
- 30H. Tibolla, F. M. Pelissari, F. C. Menegalli, LWT-Food Sci. Technol. 2014, 59, 1311.
- 31J. G. Hu, D. Tian, S. Renneckar, J. N. Saddler, Sci. Rep.-UK 2018, 8, 8.
- 32F. Chemat, N. Rombaut, A. Meullemiestre, M. Turk, S. Perino, A. S. Fabiano-Tixier, M. Abert-Vian, Innov. Food Sci. Emerg. 2017, 41, 357.
- 33M. A. Gao, F. Xu, S. R. Li, X. C. Ji, S. F. Chen, D. Q. Zhang, Biosyst. Eng. 2010, 106, 470.
- 34A. L. F. Santos, K. Y. F. Kawase, G. L. V. Coelho, J. Supercrit. Fluid. 2011, 56, 277.
- 35 Ash in Wood and Pulp, https://www.tappi.org/content/sarg/t211.pdf (accessed: 20 August 2018).
- 36 Alpha-, Betha-, and Gamma-, Cellulose in Pulp, https://research.cnr.ncsu.edu/wpsanalytical/documents/T203.PDF (accessed: 20 August, 2018).
- 37 Acid-Insoluble Lignin in Wood and Pulp, https://www.tappi.org/content/SARG/T222.pdf (accessed: 20 August 2018).
- 38 Solvent Extractives of Wood and Pulp, https://www.tappi.org/content/sarg/t204.pdf (accessed: 20 August 2018).
- 39L. Segal, J. J. Creely, A. E. Martin Jr., C. M. Conrad, Text. Res. J. 1959, 29, 786.
- 40K. Belkacemi, PhD thesis, Université de Sherbrooke, Sherbrooke, Canada 1990.
- 41R. Alinia, S. Zabihi, F. Esmaeilzadeh, J. F. Kalajahi, Biosyst. Eng. 2010, 107, 61.
- 42K. H. Kim, J. Hong, Bioresource Technol. 2001, 77, 139.
- 43Y. Z. Zheng, H. M. Lin, G. T. Tsao, Biotechnol. Prog. 1998, 14, 890.
- 44A. R. C. Morais, A. C. Mata, R. Bogel-Lukasik, Green Chem. 2014, 16, 4312.
- 45M. K. Deyholos, Isr. J. Plant Sci. 2007, 54, 273.
10.1560/IJPS_54_4_273 Google Scholar
- 46G. Mondragon, S. Fernandes, A. Retegi, C. Pena, I. Algar, A. Eceiza, A. Arbelaiz, Ind. Crop. Prod. 2014, 55, 140.
- 47L. V. D. Serna, C. E. O. Alzate, C. A. C. Alzate, Bioresource Technol. 2016, 199, 113.
- 48J. Q. Albarelli, R. B. Rabelo, D. T. Santos, M. M. Beppu, M. A. A. Meireles, J. Supercrit. Fluid. 2011, 58, 343.
- 49N. Che Hamzah, M. Markom, O. Hassan, S. Harun, Industrial Biotechnology 2015, 11, 272.
- 50A. Carrillo, X. Colom, J. J. Sunol, J. Saurina, Eur. Polym. J. 2004, 40, 2229.
- 51M. Sain, S. Panthapulakkal, Ind. Crop. Prod. 2006, 23, 1.
- 52L. N. Luduena, A. Vecchio, P. M. Stefani, V. A. Alvarez, Fiber. Polym. 2013, 14, 1118.
- 53M. Le Troedec, D. Sedan, C. Peyratout, J. P. Bonnet, A. Smith, R. Guinebretiere, V. Gloaguen, P. Krausz, Compos. Part A-Appl. S. 2008, 39, 514.
- 54V. Tserki, N. E. Zafeiropoulos, F. Simon, C. Panayiotou, Compos. Part A-Appl. S. 2005, 36, 1110.
- 55S. Elanthikkal, U. Gopalakrishnapanicker, S. Varghese, J. T. Guthrie, Carbohydr. Polym. 2010, 80, 852.
- 56A. Alemdar, M. Sain, Compos. Sci. Technol. 2008, 68, 557.
- 57D. N. S. Hon, Chemical Modification of Lignocellulosic Materials, M. Dekker, New York 1996.
- 58N. Srinivasan, L. K. Ju, Biomass Bioenerg. 2012, 47, 451.