High-Conversion Microreactor for Hydrogenation of Organic Waste
Xiwen Yang
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
Search for more papers by this authorJianhua Zhou
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
Search for more papers by this authorQiao Lan
College of Petrochemical Engineering, Lanzhou University of Technology, No.36, Pengjiaping Road, Lanzhou, 730050 China
Search for more papers by this authorJian Liu
College of Petrochemical Engineering, Lanzhou University of Technology, No.36, Pengjiaping Road, Lanzhou, 730050 China
Search for more papers by this authorCorresponding Author
Qianzu Zhao
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
E-mail: [email protected]
Search for more papers by this authorXiwen Yang
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
Search for more papers by this authorJianhua Zhou
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
Search for more papers by this authorQiao Lan
College of Petrochemical Engineering, Lanzhou University of Technology, No.36, Pengjiaping Road, Lanzhou, 730050 China
Search for more papers by this authorJian Liu
College of Petrochemical Engineering, Lanzhou University of Technology, No.36, Pengjiaping Road, Lanzhou, 730050 China
Search for more papers by this authorCorresponding Author
Qianzu Zhao
PVC Business Division, Jinchuan Group Chemical New Material Co., Ltd, No.1 Jinchuan Road, Jinchang, 737100 China
E-mail: [email protected]
Search for more papers by this authorAbstract
Here, a microchannel reactor based on polytetrafluoroethylene (PTFE) capillary was successfully constructed and catalyzed 4-nitrophenol (4-NP) stably and efficiently. The reactor is based on inexpensive PTFE capillary tubes, and polydopamine is adsorbed on the inner wall of the capillary tubes by utilizing its super adhesive property. Then, the uniform and stable loading of palladium nanoparticles on the multilayer hybridized membrane is achieved in the microchannel by continuous flow using layer-by-layer self-assembly, ion exchange, and in situ reduction. Under the condition of low catalyst loading, the conversion rate of high concentration 4-NP (0.5 mM) wastewater was maintained above 98 % for 360 h, which demonstrated the excellent catalytic efficiency and good stability of the microchannel reactor. In addition, the microreactor has excellent universality. This study provides a new way to treat organic wastewater efficiently and finely.
References
- 1Y. Xia, C. T. Campbell, B. Roldan Cuenya, M. Mavrikakis, Chem. Rev. 2021, 121 (2), 563–566. DOI: https://doi.org/10.1021/acs.chemrev.0c01269
- 2S. Xu, S. Ning, Y. Wang, X. Wang, H. Dong, L. Chen, X. Yin, T. Fujita, Y. Wei, J. Cleaner Prod. 2023, 396, 136479. DOI: https://doi.org/10.1016/j.jclepro.2023.136479
- 3X. Yang, Q. Lan, J. Yun, Z. Luo, J. Liu, Chem. Eng. J. 2023, 477, 147183. DOI: https://doi.org/10.1016/j.cej.2023.147183
- 4S. Zhang, L. Zhong, Z. Xu, J. Hu, A. Tang, X. Zuo, Chemosphere 2022, 291 (Pt 2), 132871. DOI: https://doi.org/10.1016/j.chemosphere.2021.132871
- 5P. K. Arora, A. Srivastava, S. K. Garg, V. P. Singh, Bioresour. Technol. 2018, 250, 902–909. DOI: https://doi.org/10.1016/j.biortech.2017.12.007
- 6V. N. Lima, C. S. D. Rodrigues, Y. B. Brandão, M. Benachour, L. M. Madeira, J. Water Process Eng. 2022, 47, 102685. DOI: https://doi.org/10.1016/j.jwpe.2022.102685
- 7S. E. M. Saber, S. N. A. Md Jamil, L. C. Abdullah, T. S. Y. Choong, T. Ming Ting, RSC Adv. 2021, 11 (14), 8150–8162. DOI: https://doi.org/10.1039/d0ra10910j
- 8K. Wang, X. Zhu, Y. Yang, D. Ye, R. Chen, Q. Liao, J. Environ. Chem. Eng. 2022, 10 (5), 108253. DOI: https://doi.org/10.1016/j.jece.2022.108253
- 9Z. Hasan, D.-W. Cho, C.-M. Chon, K. Yoon, H. Song, Chem. Eng. J. 2016, 298, 183–190. DOI: https://doi.org/10.1016/j.cej.2016.04.029
- 10X. Kong, H. Zhu, C. Chen, G. Huang, Q. Chen, Chem. Phys. Lett. 2017, 684, 148–152. DOI: https://doi.org/10.1016/j.cplett.2017.06.049
- 11H. Abdullah, D.-H. Kuo, Int. J. Hydrogen Energy 2019, 44 (1), 191–201. DOI: https://doi.org/10.1016/j.ijhydene.2018.04.036
- 12L. Yao, L. Zhang, B. Long, Y. Dai, Y. Ding, J. Mol. Liq. 2021, 325, 115002. DOI: https://doi.org/10.1016/j.molliq.2020.115002
- 13N.-T. Nguyen, Z. Wu, J. Micromech. Microeng. 2005, 15 (2), R1–R16. DOI: https://doi.org/10.1088/0960-1317/15/2/r01
- 14B. P. Mason, K. E. Price, J. L. Steinbacher, A. R. Bogdan, D. T. McQuade, Chem. Rev. 2007, 107 (6), 2300–2318. DOI: https://doi.org/10.1021/cr050944c
- 15P. L. Suryawanshi, S. P. Gumfekar, B. A. Bhanvase, S. H. Sonawane, M. S. Pimplapure, Chem. Eng. Sci. 2018, 189, 431–448. DOI: https://doi.org/10.1016/j.ces.2018.03.026
- 16T. Ma, S. Zhao, W. Tang, W. Zhong, Y. Liu, Y. Feng, Z. Fang, H. Qin, H. Xu, Y. Li, Y. Zhao, F. Meng, L. Yi, W. He, K. Guo, Chem. Eng. J. 2024, 493, 152508. DOI: https://doi.org/10.1016/j.cej.2024.152508
- 17M. Bajić, S. Khiawjan, S. T. Hilton, G. J. Lye, M. P. C. Marques, N. Szita, Biochem. Eng. J. 2024, 205, 109260. DOI: https://doi.org/10.1016/j.bej.2024.109260
- 18J.-F. Peloquin, D. Francoeur, W. Leclerc, D. Mehanovic, J.-F. Dufault, P. Camus, I. J. Castellanos-Beltran, N. Braidy, L. G. Fréchette, M. Picard, Int. J. Hydrogen Energy 2024, 49, 907–915. DOI: https://doi.org/10.1016/j.ijhydene.2023.07.343
- 19Y. Chen, R. Wang, R. Dong, J. Kou, C. Lu, Langmuir 2024, 40 (22), 11590–11598. DOI: https://doi.org/10.1021/acs.langmuir.4c00805
- 20H. Feng, X. Zhu, R. Chen, Q. Liao, J. Liu, L. Li, Chem. Eng. J. 2016, 306, 1017–1025. DOI: https://doi.org/10.1016/j.cej.2016.08.011
- 21R. Abdallah, V. Meille, J. Shaw, D. Wenn, C. de Bellefon, Chem. Commun. 2004, (4), 372–373. DOI: https://doi.org/10.1039/b312290e
- 22M. Colella, C. Carlucci, R. Luisi, Top. Curr. Chem. 2018, 376 (6), 46. DOI: https://doi.org/10.1007/s41061-018-0225-0
- 23D. Zhao, K. Ding, ACS Catal. 2013, 3 (5), 928–944. DOI: https://doi.org/10.1021/cs300830x
- 24J. Kobayashi, Y. Mori, K. Okamoto, R. Akiyama, M. Ueno, T. Kitamori, S. Kobayashi, Science 2004, 304 (5675), 1305–1308. DOI: https://doi.org/10.1126/science.1096956
- 25F. Costantini, E. M. Benetti, R. M. Tiggelaar, H. J. G. E. Gardeniers, D. N. Reinhoudt, J. Huskens, G. J. Vancso, W. Verboom, Chemistry A Eur. J. 2010, 16 (41), 12406–12411. DOI: https://doi.org/10.1002/chem.201000948
- 26A. Sachse, A. Galarneau, B. Coq, F. Fajula, New J. Chem. 2011, 35 (2), 259. DOI: https://doi.org/10.1039/c0nj00965b
- 27S. Kataoka, Y. Takeuchi, A. Harada, T. Takagi, Y. Takenaka, N. Fukaya, H. Yasuda, T. Ohmori, A. Endo, Appl. Catal. A 2012, 427–428, 119–124. DOI: https://doi.org/10.1016/j.apcata.2012.03.041
- 28H. Lee, S. M. Dellatore, W. M. Miller, P. B. Messersmith, Science 2007, 318 (5849), 426–430. DOI: https://doi.org/10.1126/science.1147241
- 29J. Zhang, B. Yuan, Z. Wang, T. Chen, Colloid Polym. Sci. 2014, 292 (5), 1235–1240. DOI: https://doi.org/10.1007/s00396-014-3188-x
- 30E. Walsh, Y. Muzychka, P. Walsh, V. Egan, J. Punch, Int. J. Multiphase Flow 2009, 35 (10), 879–884. DOI: https://doi.org/10.1016/j.ijmultiphaseflow.2009.06.007
- 31A. F. Lee, S. F. J. Hackett, J. S. J. Hargreaves, K. Wilson, Green Chem. 2006, 8 (6), 549. DOI: https://doi.org/10.1039/b601984f
- 32S. Wu, J. Liu, Y. Ye, Z. Tian, P. Li, Y. Cai, Y. Lin, C. Liang, Appl. Surf. Sci. 2019, 471, 469–474. DOI: https://doi.org/10.1016/j.apsusc.2018.12.035
- 33V. J. Garole, B. C. Choudhary, S. R. Tetgure, D. J. Garole, A. U. Borse, Int. J. Environ. Sci. Technol. 2019, 16 (12), 7885–7892. DOI: https://doi.org/10.1007/s13762-018-2173-1
- 34J. Li, F. Wu, L. Lin, Y. Guo, H. Liu, X. Zhang, Chem. Eng. J. 2018, 333, 146–152. DOI: https://doi.org/10.1016/j.cej.2017.09.154
- 35M. Zhou, M. Liu, H. Jiang, R. Chen, Ind. Eng. Chem. Res. 2021, 60 (13), 4847–4859. DOI: https://doi.org/10.1021/acs.iecr.0c06263
- 36G. Shao, Y. Du, J. Zhang, Z. Tang, H. Jiang, R. Chen, Sep. Purif. Technol. 2024, 338, 126590. DOI: https://doi.org/10.1016/j.seppur.2024.126590
- 37X. Gu, W. Qi, X. Xu, Z. Sun, L. Zhang, W. Liu, X. Pan, D. Su, Nanoscale 2014, 6 (12), 6609–6616. DOI: https://doi.org/10.1039/c4nr00826j