Adsorption and Enrichment of Ag(I) from Wastewater Using Wheat Bran-Derived Biosorbent
Wanjia Feng
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorYunfan Bai
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorChuhua Qi
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorPingping Wu
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorZhixian He
Instrumental Analysis Center, Xi'an University of Architecture and Technology, Zigeshuyuan, Caosi East Road, Caotang Temple Scenic Area, Xi'an, Shaanxi, 710311 China
Search for more papers by this authorShuangli Chen
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorCorresponding Author
Sijing Zhang
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
E-mail: [email protected]
Search for more papers by this authorWanjia Feng
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorYunfan Bai
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorChuhua Qi
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorPingping Wu
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorZhixian He
Instrumental Analysis Center, Xi'an University of Architecture and Technology, Zigeshuyuan, Caosi East Road, Caotang Temple Scenic Area, Xi'an, Shaanxi, 710311 China
Search for more papers by this authorShuangli Chen
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
Search for more papers by this authorCorresponding Author
Sijing Zhang
School of Chemistry and Chemical Engineering, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an, Shaanxi, 710055 China
E-mail: [email protected]
Search for more papers by this authorAbstract
2,5-Dimercapto-1,3,4-thiadiazole modified wheat bran (DMTD-WB), a bio-sorbent synthesized by immobilizing DMTD onto WB, demonstrated outstanding selectivity for Ag(I) recovery from multi-metal wastewater. Under optimized conditions (30 °C, pH 3.0, dosage of 6.00 g L−1), an Ag(I) adsorption efficiency of 98.15 % was achieved. Fixed-bed adsorption experiments further confirmed its selectivity, whereas regeneration tests indicated a recovery efficiency of 81.43 % for Ag(I) after five cycles. Thermodynamic analysis revealed a maximum adsorption capacity of 60.39 mg g−1 at 40 °C. Kinetic and mass transfer studies identified chemisorption via coordination as the dominant adsorption mechanism, with the homogeneous solid diffusion (HSD) model providing a satisfactory fit for the adsorption kinetics. Overall, this study highlights DMTD-WB as a sustainable and efficient adsorbent for Ag(I) recovery, offering a value-added approach to agricultural waste utilization in wastewater treatment.
The authors have declared no conflict of interest.
Open Research
Data Availability Statement
The author confirms that data supporting the result of this study are available in the article.
References
- 1R. Abdeldayem, Appl. Water Sci. 2019, 10, 1. DOI: https://doi.org/10.1007/s13201-019-1058-x
10.1007/s13201-019-1058-x Google Scholar
- 2H. Ma, G. Yin, S. Yan, Z. Li, Y. Ma, L. Ma, ACS Appl. Nano Mater. 2018, 2, 351–359. DOI: https://doi.org/10.1021/acsanm.8b01943
- 3N. Ding, D. Ying, J. Cheng, X. Jiang, K. Li, Y. Wang, X. Dou, J. Jia, ACS Sustainable Chem. Eng. 2019, 7, 17888–17895. DOI: https://doi.org/10.1021/acssuschemeng.9b04465.
- 4J. Niu, W. Yan, J. Du, X. Hao, F. Wang, Z. Wang, G. Guan, Chem. Eng. J. 2020, 389, 124498. DOI: https://doi.org/10.1016/j.cej.2020.124498
- 5G. T. Tee, X. Y. Gok, W. F. Yong, Environ. Res. 2022, 212, 113248. DOI: https://doi.org/10.1016/j.envres.2022.113248
- 6N. B. Singh, G. Nagpal, S. Agrawal, Rachna, Environ. Technol. Innov. 2018, 11, 187–240. DOI: https://doi.org/10.1016/j.eti.2018.05.006
- 7V. Nejadshafiee, M. R. Islami, Mater Sci. Eng. C Mater Biol. Appl. 2019, 101, 42–52. DOI: https://doi.org/10.1016/j.msec.2019.03.081
- 8T. A. Aragaw, F. M. Bogale, Front. Environ. Sci. 2021, 9, 558. DOI: https://doi.org/10.3389/fenvs.2021.764958
- 9F. Ogata, Y. Uematsu, N. Nagai, M. Nakamura, A. Tabuchi, C. Saenjum, T. Nakamura, N. Kawasaki, Bioresour. Technol. Rep. 2022, 20, 101238. DOI: https://doi.org/10.1016/j.biteb.2022.101238
- 10T. N. Tran, C. T. Doan, S. L. Wang, Polymers (Basel) 2021, 13, 287. DOI: https://doi.org/10.3390/polym13020287
- 11Q. Wu, Y. Xian, Z. He, Q. Zhang, J. Wu, G. Yang, X. Zhang, H. Qi, J. Ma, Y. Xiao, L. Long, Sci. Rep. 2019, 9, 15999. DOI: https://doi.org/10.1038/s41598-019-52554-2
- 12F. Ogata, N. Nagai, R. Itami, T. Nakamura, N. Kawasaki, J. Environ. Chem. Eng. 2020, 8, 103710. DOI: https://doi.org/10.1016/j.jece.2020.103710
- 13M. Elmaalouf, A. Da Silva, S. Duran, C. Tard, M. Comesaña-Hermo, S. Gam-Derouich, V. Briois, D. Alloyeau, M. Giraud, J.-Y. Piquemal, J. Peron, Chem. Sci. 2022, 13, 11807–11816. DOI: https://doi.org/10.1039/d2sc03640a
- 14H. Xue, X.-S. Huang, Q. Yin, X.-J. Hu, H.-Q. Zheng, G. Huang, T.-F. Liu, Cryst. Growth Des. 2020, 20, 4861–4866. DOI: https://doi.org/10.1021/acs.cgd.0c00239.
- 15E. Rincón, A. M. Balu, R. Luque, L. Serrano, Ind. Crops Prod. 2019, 141, 111805. DOI: https://doi.org/10.1016/j.indcrop.2019.111805
- 16L. Huang, F. Tang, B. Hu, J. Shen, T. Yu, Q. Meng, J. Phys. Chem. B 2001, 105, 7984–7989. DOI: https://doi.org/10.1021/jp004385j
- 17B. Wang, C. Yin, H. Ying, Silicon 2022, 14, 7849–7856. DOI: https://doi.org/10.1007/s12633-021-01539-w
- 18X. He, Z. Liu, W. Niu, L. Yang, T. Zhou, D. Qin, Z. Niu, Q. Yuan, Energy 2018, 143, 746–756. DOI: https://doi.org/10.1016/j.energy.2017.11.062
- 19J. Wang, W. Zhang, X. Kang, C. Zhang, Environ. Pollut. 2019, 255, 113043. DOI: https://doi.org/10.1016/j.envpol.2019.113043
- 20A. Shodiev, M. Chouchane, M. Gaberscek, O. Arcelus, J. Xu, H. Oularbi, J. Yu, J. Li, M. Morcrette, A. A. Franco, Energy Storage Mater. 2022, 47, 462–471. DOI: https://doi.org/10.1016/j.ensm.2022.01.058
- 21L. Cao, P. Wang, X. Miao, H. Duan, H. Wang, Y. Dong, R. Ma, B. Zhang, B. Wu, X. Li, P. J. Stang, Inorg. Chem. 2019, 58, 6268–6275. DOI: https://doi.org/10.1021/acs.inorgchem.9b00484
- 22P. Bartczak, M. Norman, Ł. Klapiszewski, N. Karwańska, M. Kawalec, M. Baczyńska, M. Wysokowski, J. Zdarta, F. Ciesielczyk, T. Jesionowski, Arabian J. Chem. 2018, 11, 1209–1222. DOI: https://doi.org/10.1016/j.arabjc.2015.07.018
- 23N. Esfandiar, E. R. McKenzie, J. Environ. Manage. 2022, 324, 116314. DOI: https://doi.org/10.1016/j.jenvman.2022.116314
- 24M. Zhu, D. Xiang, S. Wang, Y. Chen, X. Liu, R. Zhu, J. Ye, S. Wang, L. Fu, Int. J. Biol. Macromol. 2024, 276, 134000. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134000
- 25Y. Zhou, Q. Chu, D. Hou, D. Chen, X. You, J. Phys. Chem. A 2022, 126, 630–639. DOI: https://doi.org/10.1021/acs.jpca.1c09366
- 26W. J. Weber Jr., J. C. Morris, J. Sanit. Eng. Div. 1963, 89, 31–59. DOI: https://doi.org/10.1061/JSEDAI.0000430
10.1061/JSEDAI.0000430 Google Scholar
- 27H. N. Bhatti, Z. Mahmood, A. Kausar, S. M. Yakout, O. H. Shair, M. Iqbal, Int. J. Biol. Macromol. 2020, 153, 146–157. DOI: https://doi.org/10.1016/j.ijbiomac.2020.02.306
- 28Q. Ouyang, G. Li, X. Liu, Q. Wang, X. Zhang, J. Wang, Z. Fan, G. Gao, L. Li, Electrochim. Acta 2022, 426, 140772. DOI: https://doi.org/10.1016/j.electacta.2022.140772
- 29H. Qiu, L. Lv, B.-C. Pan, Q.-J. Zhang, W.-M. Zhang, Q.-x. Zhang, J. Zhejiang Univ., Sci., A 2009, 10, 716–724. DOI: https://doi.org/10.1631/jzus.A0820524
- 30A. E. Rodrigues, C. M. Silva, Chem. Eng. J. 2016, 306, 1138–1142. DOI: https://doi.org/10.1016/j.cej.2016.08.055
- 31R. R. M. Johnston, M. Spiro, J. Phys. Chem. 1967, 71, 3784–3790. DOI: https://doi.org/10.1021/j100871a011
- 32M. A. Al-Ghouti, D. A. Da'ana, J. Hazard. Mater. 2020, 393, 122383. DOI: https://doi.org/10.1016/j.jhazmat.2020.122383
- 33F. Liu, S. Wang, S. Chen, Int. J. Biol. Macromol. 2019, 152, 1242–1251. DOI: https://doi.org/10.1016/j.ijbiomac.2019.10.221
- 34Q.-S. Huang, W. Wu, W. Wei, B.-J. Ni, Sci. Total Environ. 2019, 692, 1048–1056. DOI: https://doi.org/10.1016/j.scitotenv.2019.07.328
- 35S. Zhang, J. Dang, J. Lin, M. Liu, M. Zhang, S. Chen, J. Environ. Chem. Eng. 2021, 9, 104994. DOI: https://doi.org/10.1016/j.jece.2020.104994
- 36S. Zhang, F. Ao, Y. Wang, J. Zhao, Y. Ji, S. Chen, J. Renew. Mater. 2018, 6, 102–116. DOI: https://doi.org/10.7569/JRM.2017.634154
- 37L. B. Escudero, G. Vanni, F. A. Duarte, T. Segger, G. L. Dotto, Chem. Eng. Commun. 2018, 205, 325–337. DOI: https://doi.org/10.1080/00986445.2017.1387856
- 38G. B. Daware, P. R. Gogate, Environ. Technol. Innov. 2021, 21, 101292. DOI: https://doi.org/10.1016/j.eti.2020.101292.
- 39F. B. Scheufele, J. Staudt, M. H. Ueda, C. Ribeiro, V. Steffen, C. E. Borba, A. N. Módenes, A. D. Kroumov, J. Environ. Chem. Eng. 2020, 8, 103533. DOI: https://doi.org/10.1016/j.jece.2019.103533
- 40Z. M. Şenol, Int. J. Biol. Macromol. 2021, 183, 1640–1648. DOI: https://doi.org/10.1016/j.ijbiomac.2021.05.130
- 41T. Ma, R. Zhao, Z. Li, X. Jing, M. Faheem, J. Song, Y. Tian, X. Lv, Q. Shu, G. Zhu, ACS Appl. Mater. Interfaces 2020, 12, 30474–30482. DOI: https://doi.org/10.1021/acsami.0c08352
- 42C. Zeng, P. Liu, Z. Xiao, Y. Li, L. Song, Z. Cao, D. Wu, Y.-F. Zhang, ACS Sustainable Chem. Eng. 2022, 10, 1103–1114. DOI: https://doi.org/10.1021/acssuschemeng.1c05915.
- 43A. Abdolali, H. H. Ngo, W. Guo, S. Lu, S.-S. Chen, N. C. Nguyen, X. Zhang, J. Wang, Y. Wu, Sci. Total Environ. 2016, 542, 603–611. DOI: https://doi.org/10.1016/j.scitotenv.2015.10.095
- 44M. S. Mansy, R. S. Hassan, Y. T. Selim, S. H. Kenawy, Appl. Radiat. Isot. 2017, 130, 198–205. DOI: https://doi.org/10.1016/j.apradiso.2017.09.042
- 45E. A. Abdel-Galil, R. S. Hassan, M. A. Eid, Appl. Radiat. Isot. 2019, 148, 91–101. DOI: https://doi.org/10.1016/j.apradiso.2019.03.029
- 46M. Ma, R. Du, C. Chu, J. Shenzhen Univ. Sci. Eng. 2020, 37, 536–542. DOI: https://doi.org/10.3724/SP.J.1249.2020.05536
10.3724/SP.J.1249.2020.05536 Google Scholar
- 47P. Nuengmatcha, Environ. Processes 2021, 8, 1289–1306. DOI: https://doi.org/10.1007/s40710-021-00523-1
- 48G. Jegan, M. Florence Silvia, T. Vino, A. Vimala Juliet, Wireless Pers. Commun. 2022, 125, 453–466. DOI: https://doi.org/10.1007/s11277-022-09558-5
- 49S. A. Narayan, B. Vineet, Bioinspired, Biomimetic Nanobiomaterials 2018, 7, 37–43. DOI: https://doi.org/10.1680/jbibn.16.00023
10.1680/jbibn.16.00023 Google Scholar