Research Progress of Radial-Flow Wave Rotor Technology: A Review
Corresponding Author
Erlei Gong
College of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, No.666 Liaohe Road, Changzhou, 213002 China
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
E-mail: [email protected]
Search for more papers by this authorJianzhong Li
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorZhan Feng
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorTao Zhang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorJize Liang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorCorresponding Author
Erlei Gong
College of Aerospace and Mechanical Engineering, Changzhou Institute of Technology, No.666 Liaohe Road, Changzhou, 213002 China
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
E-mail: [email protected]
Search for more papers by this authorJianzhong Li
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorZhan Feng
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorTao Zhang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorJize Liang
College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, No.29 Yudao Street, Nanjing, 210016 China
Search for more papers by this authorAbstract
Wave rotor boosting technology offers significant advantages in improving the thermal cycle efficiency of propulsion systems. This article provides a comprehensive review of the recently proposed radial-flow wave rotor technology, focusing on the research progress of radial-flow wave rotor combustors and top-cycle radial-flow wave rotors for ultra-micro gas turbines. The thermal cycle characteristics, structural features, operational principles, and research achievements of these technologies are discussed. The analysis suggests that this technology is still in its developmental phase, characterized by underdeveloped foundational theories and a lack of valuable experimental data and engineering application cases. The summarized technological challenges contribute to guiding the direction of research in radial-flow wave rotor technology.
References
- 1Y. N. He, S. Y. Wang, K. K. Lai, Energy Econ. 2010, 32 (4), 868–876.
- 2K. R. Sarah, S. C. Noah, C. Arica, et al. Energy Policy 2017, 101, 251–264.
10.1016/j.enpol.2016.11.035 Google Scholar
- 3J. M. Cullen, J. M. Allwood, Energy 2010, 35 (5), 2059–2069.
- 4J. M. Cullen, J. M. Allwood, Energy Policy 2010, 38 (1), 75–81.
- 5I. S. Ertesvåg, M. Mielnik, Energy 2000, 25 (10), 957–973.
- 6N. Nakićenović, P. V. Gilli, R. Kurz, Energy 1996, 21 (3), 223–237.
- 7B. Segall, D. Shekhtman, J. Langhorn, N. J. Parziale, Improved Debris Blocker and Flow Terminator in a Shock Tunnel, AIAA SCITECH 2024 Forum, 2024, Orlando, FL, AIAA 2024-2570.
- 8M. Z. Saeed, Á. Á. Pardiñas, K. Banasiak, A. Hafner, A. Thatte, Therm. Sci. Eng. Prog. 2024, 51 (6), 102643.
- 9A. Elatar, B. Fricke, V. Sharma, K. Nawaz, Energies 2021, 14 (6), 1754.
- 10M. Gieras, A. M. Trzeciak, Energies 2024, 17 (6), 1427.
- 11A. Q. Zhang, L. Y. Xu, J. Jin, et al. Exp. Therm. Fluid Sci. 2024, 151 (1), 111104.
10.1016/j.expthermflusci.2023.111104 Google Scholar
- 12Y. Li, S. Qi, Qi Jing, L. Zhang, D. Wang, C. Shi, H. Xu, Y. Li, Z. Wu, R. Zhou, Appl. Therm. Eng. 2024, 244 (5), 122758.
- 13X. Li, J. Li, Q. Qin, Wu Jin, Li Yuan, Acta Astronaut. 2024, 215 (2), 124–134.
- 14Q. Bai, J. Han, H. Qiu, S. Zhang, C. Weng, Int. J. Hydrogen Energy 2024, 49 (1), 450–461.
- 15S. Chan, H. Liu, H. Song, F. Li, C. Jiang, Z. Gao, Chin. J. Aeronaut. 2022, 35 (5), 247–259.
- 16Z. Feng, J. Li, E. Gong, Q. Yao, X. Chen, Y. Chen, ASME. J. Fluids Eng. December 2024, 146 (12), 121202.
- 17H. E. Weber, Shock-Expansion Wave Engines: New Directions for Power Production. ASME 1986 International Gas Turbine Conference and Exhibit, June 8–12, 1986, Dusseldorf, West Germany, ASME Paper1986-GT62.
- 18H. E. Weber, Shock Wave Engine Design, John Wiley and Sons, New York 1995.
- 19P. Akbari, R. Nalim, N. Mueller, J. Eng. Gas Turbines Power 2006, V (128), 717–735.
10.1115/1.2204628 Google Scholar
- 20P. Akbari, E. Szpynda, M. R. Nalim, Recent Developments in Wave Rotor Combustion Technology and Future Perspectives: A Progress Review, 43rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit: 43rd AIAA (American Institute of Aeronautics and Astronautics)/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 8–11 July 2007, Cincinnati, OHAIAA 2007-5055.
- 21D. Blunck, D. Shouse, C. Neuroth, et al. Experimental and Computational Studies of an Ultra-Compact Combustor. ASME Paper GT2013-94372, 2013.
- 22R. Zheng, E. Gong, J. Li, Q. Yao, Z. Nie, Energies 2024, 17 (9), 2074.
- 23R. C. Zheng, E. L. Gong, J. Z. Li, et al. J. Propul. Technol. 2024, 45 (9), 2305028.
- 24P. Akbari, I. Agoos, Two-Stage Wave Disk Engine Concept and Performance Prediction. SAE Technical Paper 2017-01-2046 2017. DOI: https://doi.org/10.4271/2017-01-2046
10.4271/2017?01?2046 Google Scholar
- 25G. Sun, P. Akbari, B. G. Müller, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia 2012, AIAA 2012-3704.
- 26S. Chan, H. Liu, F. Xing, ASME. J. Eng. Gas Turbines Power 2016, 138 (11), 112601.
- 27J. Piechna, P. Akbari, F. Iancu, et al. Radial-Flow Wave Rotor Concepts, Unconventional Designs and Applications, Proceedings of IMECEO4 2004 ASME International Mechanical Engineering Congress, Anaheim, California USA, November 2004, ASME IMECE2004-59022.
- 28M. Vagani, L. Pohořelský, G. Sun, et al. A Wave Disc Engine Concept for Micro Power Generation. PowerMEMS, Washington DC, USA 2009.
- 29E. Tarkleson, Wave-Disk Engine Control, System Design And Implementation. Michigan State University, Michigan 2013.
- 30P. Parraga-Ramirez, M. Vagani, E. Tarkleson, et al. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 30 July – 01 August 2012, AIAA 2012-3703. DOI: https://doi.org/10.2514/6.2012-3703
10.2514/6.2012-3703 Google Scholar
- 31P. F. Parraga-Ramirez, Practical Power and Combustion Investigations on First Wave Disk Engine Prototypes. Michigan State University, Michigan 2013.
- 32P. H. Snyder, T. M. Elharis, S. D. Wijeyakulasuriya, et al. Pressure Gain Combustor Component Viability Assessment Based on Initial Testing, 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, California, 31 July 2011 – 03 August 2011, AIAA 2011-5749.
- 33P. H. Snyder, M. R. Nalim, Pressure Gain Combustion Application to Marine and Industrial Gas Turbines, ASME Turbo Expo 2012: Turbine Technical Conference and Exposition, Copenhagen, Denmark, June 11–15, 2012, GT2012-69886.
- 34J. Z. Li, K. C. Zhang, W. Li, et al. Int. J. Aerosp. Eng. 2019, 2019, 6259204. DOI: https://doi.org/10.1155/2019/6259204
- 35H. W. R. R. Tom, J. Eng. Gas Turbines Power 1994, 116 (3), 495–510.
10.1115/1.2906848 Google Scholar
- 36N. Müller, J. Piechna, G. Sun, P. Parraga, US Patent 9856791, 2018.
- 37P. Akbari, C. J. Tait, Development and Initial Testing of A Radial Wave Engine, ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition, Phoenix, Arizona, USA, June 17–21, 2019, ASME GT2019-90608.
- 38P. Akbari, C. J Tait, G. M Brady, et al. Enhancement of The Radial Wave Engine, AIAA Propulsion and Energy 2019 Forum, Indianapolis, IN, 19–22 August 2019, AIAA 2019-4037.
- 39P. Akbari, G. M. Brady, B. C. Sell, et al. ASME J. Eng. Gas Turbines Power 2021, 143 (4), 041027.
- 40P. Akbari, M. D. Polanka, Performance of An Ultra-Compact Disk-Shaped Reheat Gas Turbine For Power Generation, AIAA/SAE/ASEE joint propulsion conference, Cincinnati, Ohio, July 9–11, 2018, AIAA 2018-4878.
- 41J. Zelina, D. T. Shouse, R D. Hancock, Ultra-Compact Combustors for Advanced Gas Turbine Engines, ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, June 14–17, 2004, GT2004-53155.
- 42B. T. Bohan, M. D. Polanka, ASME J. Eng. Gas Turbines Power 2013, 135, (5), 051502.
- 43D L. Blunck, D T. Shouse, C. Neuroth, A. Lynch, T J. Erdmann, D L. Burrus, J. Zelina, D. Richardson, A. Caswell, ASME J. Eng. Gas Turbines Power 2014, 136 (9), 1–8.
- 44E. Rodriquez, A. Cottle, C. Schmiedel, et al. Design Strategy for Product Migration From a Circumferential Combustion Cavity, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9–13 January 2017, AIAA Paper 2017-0390.
- 45B. L. Koff, J. Propul. Power 2004, 20 (4), 577–595.
- 46A. H. Epstein, AIAA J. 2014, 52 (5), 901–911.
- 47G. W Sun, P. Akbari, B. Gower, et al. Thermodynamics of The Wave Disk Engine. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 30 July 2012 – 01 August 2012, AIAA 2012-3704.
- 48Z. Liu, P. Akbari, Proceedings of the 1st Thermal and Fluid Engineering Summer Conference, New York City, USA, 2015, ASTFE TFESC-12761.
- 49L. Tengyue, W. Shiqi, Summary on Military Unmanned Helicopters and Power Systems, Aviation Power, Spring Hill, FL 2020 (In Chinese).
- 50W. Shiqi, A Brief Analysis of the Current Status of Unmanned Aerial Vehicle Power Systems in China, Aviation Power, Spring Hill, FL 2019 (In Chinese).
- 51O. Ansari, M. Alam, Appl. Math. Mech. 2014, V (592–594), 2319–2323.
- 52Z. Renchuan, G. Erlei, L. Jianzhong, et al. Energies 2024, 17 (9), 2074. DOI: https://doi.org/10.3390/en17092074
10.3390/en17092074 Google Scholar
- 53Y M. Najim, N. Mueller, I S. Wichman, Combust. Flame 2015, 162 (2015), 3980–3990.
- 54R. Kiran, S. D. Wijeyakulasriya, N. Müller, 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, Georgia, 30 July 2012 – 01 August 2012, AIAA 2012-4170.
- 55R. He, F. Zhang, J. Li, E. Gong, Q. Yao, Wu Jin, Fuel 2025, 386, 134142.
- 56N. Zhaolong, G. Erlei, L. Jianzhong, et al. J. Fluids Eng. 2005, 147 (6), 061401.
- 57G. W Sun, Numerical Study of the Aerodynamic Characteristics of A Wave Disc Engine, Michigan State: Michigan State University, East Lansing, MI 2012.
- 58R. Quispe-Abad, Torque Generation During the Unsteady Expansion Process in Curved Channels of a Wave Disc Engine, Michigan State: Michigan State University, East Lansing, MI 2017.
- 59K. Kurec, J. Piechna, N. Müller, PowerMEMS 2009, 4 (1), 554–557.
- 60A. Hariharan, Experimental and Numerical Study of Premixed Flame Propagation in a Constant Volume Combustion Chamber, Michigan State: Michigan State University, East Lansing, MI 2012.
- 61A. Rasheed, A. H. Furman, A. J. Dean, J. Propul. Power 2009, 25 (1), 148–161.
- 62D. E. Paxson, A. Naples, Numerical and Analytical Assessment of a Coupled Rotating Detonation Engine and Turbine Experiment, 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, 9–13 January 2017, AIAA Paper 2017-1746.
- 63L. Jie, Z. Longxi, W. Zhiwu, et al. Appl. Therm. Eng. 2017, 113, 426–434.
10.1016/j.applthermaleng.2016.10.188 Google Scholar
- 64M. M. Conrad, J. D. Wilson, M. D. Polanka, Integration Issues of an Ultra-Compact Combustor to a Jet Turbine Engine, 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, July 14 - 17, 2013, AIAA Paper 2013-3711.
- 65B. T. Bohan, M. D. Polanka, J. Eng. Gas Turbines Power 2019, 141 (1), 011504.
- 66K. Brun, R. S. Gernentz, Development and Testing of a Novel Centrifugal Gas Turbine Design: Combustor Development and Load Testing, ASME Turbo Expo 2007: Power for Land, Sea, and Air, Montreal, Canada, May 14–17, 2007, ASME Paper GT2007-28095.
- 67A. Hariharan, I. S. Wichman, N. Mueller, Proc. Central States Section Spring Technical Meeting, Dayton, OH, April, 2012, 030LF-0074.
- 68A. Hariharan, I. S. Wichman, Combust. Sci. Technol. 2014, 186 (8), 1025–1040.
- 69R. Kiran, Numerical Simulations For Performance Enhancement of a Radial, Pressure Wave Driven, Internal Combustion Engine, Michigan State University, Michigan 2013.
- 70M. Gonzalez, R. Borghi, A. Saouab, Combust. Flame 1992, 88 (2), 201–220.
- 71M. Matalon, J. L. McGreevy, Symp. (Int.) Combust. 1994, 25 (1), 1407–1413.
10.1016/S0082-0784(06)80784-8 Google Scholar
- 72H. Xiao, Q. Wang, X. Shen, S. Guo, J. Sun, Combust. Flame 2013, 160 (9), 1725–1728.
- 73R. Kiran, I. S. Wichman, N. Mueller, Combust. Theor. Model. 2014, 18 (2), 272–294.
- 74A. Hariharan, I. S. Wichman, Combust. Sci. Technol. 2014, 186 (8), 1025–1040.
- 75R. Starke, P. Roth, Combust. Flame 1986, 66 (3), 249–259.
- 76A. H. Epstein, Millimeter-Scale, MEMS GAS Turbine Engines, Proc of ASME Turbo Expo 2003 Power for Land, Sea, and Air, Atlanta, Georgia, USA, June 16–19, 2003, GT-2003-38866.
- 77F. Iancu, J. Piechna, E. Dempsey, 2nd Int. Symp. Innovative Aerial/Space Flyer Systems, The University of Tokyo, Dec. 2–3, 2005, PL-11.
- 78L. G. Fréchette, Development of a Microfabricated Silicon Motor-Driven Compression System, Massachusetts Institute of Technology, Cambridge, MA 2000.
- 79N. Müller, L. G. Fréchette, ASME Int. Mech. Eng. Congr. & Exposition, New Orleans, Louisiana, November 17 22, 2002, IMECE2002-39628.
- 80S. A. Jacobson, S. Das, N. Savoulides, Proc. 24th Army Science Conference, Orlando, FL, November 2004.
- 81D. E. Paxson, J. Eng. Gas Turbines Power 1997, 119 (7), 676–682.
- 82J. Wilson, G. E. Welch, D. E. Paxson, 45th AIAA Aerosp. Sci. Meeting Exhibit, Reno, USA, 8 January 2007 – 11 January 2007, AIAA 2007-1250.
- 83F. Iancu, J. Piechna, N. Mueller, Radial Ultra-Micro Wave Rotors (UµWR): Design and Simulation, ASME 2006 International Mechanical Engineering Congress and Exposition, Chicago, Illinois, USA, November 5–10, 2006, ASME IMECE2006-13721.
- 84K. Okamoto, T. Nagashima, K. Yamaguchi, 15th Int. Symp. Airbreathing Engines, Bangalore, India, 2–7 September 2001.
- 85K. Okamoto, T. Nagashima, K. Yamaguchi, Proc. Int. Gas Turbine Congress, Tokyo, November 2–7, 2003, IGTC2003Tokyo FR-302.
- 86K. Okamoto, Study on Internal Flow in Wave Rotor: Application to Gas Turbine Components, The University of Tokyo, Bunkyō 2002 (in Japanese).
- 87P. Akbari, L. Bermudes, Shock Waves in Narrow Channels and Their Applications for High-Efficiency Unsteady Wave Engines, AeroTech Congress & Exhibition, Fort Worth, Texas, September 2017, SAE Technical Paper, 2017-01-2043.
- 88M. Brouillette, Shock Waves 2003, 13 (1), 3–12.
- 89W. Garen, B. Meyerer, S. Udagawa, Proc. 26th Int. Symp. Shock Waves, Göttingen, Germany, 15–20 July 2009. DOI: https://doi.org/10.1007/978-3-540-85181-3_110
10.1007/978-3-540-85181-3_110 Google Scholar
- 90P. Akbari, N. Müller, Gas Dynamic Design Analyses of Charging Zone for Reverse-Flow Pressure Wave Superchargers, ASME 2003 Internal Combustion Engine Division Spring Technical Conference, Salzburg, Austria, May 11–14, 2003, ASME Paper ICES2003-690.
- 91P. Akbari, N. Müller, Preliminary Design Procedure for Gas Turbine Topping Reverse-Flow Wave Rotors, Proceedings of the International Gas Turbine Congress, Tokyo, November 2–7, 2003, ASME Paper IGTC03-FR-301.
- 92P. Akbari, N. Müller, Wave Rotor Research Program at Michigan State University, 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, Arizona, 10–13 July 2005, AIAA 2005-3844.
- 93F. Iancu, P. Akbari, N. Müller, 40th AIAA/ASME/SAE/ASEE Joint Propul. Conf. Exhibi, Fort Lauderdale, FL, 11-14 July 2004, AIAA 2004-3581.
- 94F. Iancu, J. Piechna, N. Müller, Numerical Solutions for Ultra-Micro Wave Rotors (UµWR), 35th AlAA Fluid Dynamics Conference and Exhibit, Toronto, Ontario Canada, 6–9 June 2005, AIAA 2005-5034.
- 95J. Piechna, D. Dyntar, Arch. Mech. Eng. 2010, 57 (1), 69–95.
10.2478/v10180-010-0004-0 Google Scholar
- 96F. Iancu, X. Zhu, Y. Tang, D. Alsam, N. Müller, Microsyst. Technol. 2008, 14, 79–88.
- 97K. Sharma, Preliminary Design Approach to the First Generation Internal Combustion Wave Disc Engine, Michigan State: Michigan State University, East Lansing, MI 2008.
- 98P. Akbari, M. R. Nalim, S. D. Wijeyakulasuriya, et al. Wave Disk Engine For Micro-Scale Power Generation, 44th AIAAVASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Hartford, CT, 21–23 July 2008, AIAA 2008-4879.
- 99M. Vagani, Design Considerations for Micro Wave Disc Engines, Development of Michigan: Michigan State University, East Lansing, MI 2013.
- 100C. M. Spadaccini, A. Mehra, J. Lee, X. Zhang, S. Lukachko, I. A. Waitz, ASME J. Eng. Gas Turbines Power 2003, 125 (3), 709–719.
- 101C. M. Spadaccini, J. Peck, I. A. Waitz, ASME J. Eng. Gas Turbines Power 2007, 129 (1), 49–60.
- 102A. Kharazi, P. Akbari, N. Müller, ASME 2004 International Mechanical Engineering Congress and Exposition, Anaheim, California, USA, November 13–19, 2004, ASME Paper IMECE2004- 609926.
- 103A. Kharazi, P. Akbari, N. Müller, Preliminary Study of a Novel R718 Turbo-Compression Cycle Using a 3-Port Condensing Wave Rotor, ASME Turbo Expo 2004: Power for Land, Sea, and Air, Vienna, Austria, June 14–17, 2004, ASME Paper GT2004-53622.
- 104J. A. C. Kentfield, Wave Rotors and Highlights of Their Development, 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Cleveland, OH, 13 July 1998 – 15 July 1998, AIAA Paper 98-3248.
- 105P. H. Azoury, Proc. Inst. Mech. Eng. 1966, 180 (1), 451–480.
10.1243/PIME_PROC_1965_180_033_02 Google Scholar
- 106L. Guzzella, U. Wenger, R. Martin, IC-Engine Downsizing and Pressure-Wave Supercharging for Fuel Economy, SAE 2000 World Congress, Detroit, Michigan, March 6-9, 2000, SAE Paper 2000-01-1019.