Direct Membrane Filtration of MWW: Membrane Module, Fouling Control, and Anaerobic Treatability
Yash Sudesh Teli
Department of Chemical Engineering, BITS Pilani K. K. Birla Goa Campus, NH 17B, Bypass Road, Zuari Nagar, Goa, 403726 India
Search for more papers by this authorCorresponding Author
Saroj Sundar Baral
Department of Chemical Engineering, BITS Pilani K. K. Birla Goa Campus, NH 17B, Bypass Road, Zuari Nagar, Goa, 403726 India
E-mail: [email protected]
Search for more papers by this authorYash Sudesh Teli
Department of Chemical Engineering, BITS Pilani K. K. Birla Goa Campus, NH 17B, Bypass Road, Zuari Nagar, Goa, 403726 India
Search for more papers by this authorCorresponding Author
Saroj Sundar Baral
Department of Chemical Engineering, BITS Pilani K. K. Birla Goa Campus, NH 17B, Bypass Road, Zuari Nagar, Goa, 403726 India
E-mail: [email protected]
Search for more papers by this authorAbstract
In the context of promoting a circular economy (CE), there is an urgent need to focus on the recovery of energy and resources from the sewage treatment plants (STPs). Currently, activated sludge process (ASP), a widely used process to treat municipal wastewater (MWW) fails to recover resources and energy from it. Direct membrane filtration (DMF) is a promising technique to treat MWW wherein we can get a better effluent quality while allowing us to recover intrinsic wastewater resources. DMF can also be employed to up-concentrate MWW so that it can be efficiently utilized for anaerobic digestion (AD), thereby helping in recovering energy. This review paper focuses on assessing the efficiency of DMF for treating MWW. Different membrane module configurations are discussed. Because membrane fouling is a major drawback in DMF, different membrane fouling control strategies are also presented. Finally, the potential of utilizing the up-concentrated MWW for AD is also explored.
Open Research
Data Availability Statement
Data sharing is not applicable to this article, as no datasets were generated or analyzed during the current study.
References
- 1A. Boretti, L. Rosa, Npj Clean Water 2019, 2 (1), 1–6. DOI: https://doi.org/10.1038/s41545-019-0039-9
10.1038/s41545-019-0039-9 Google Scholar
- 2A. U. A. Arif, M. T. Sorour, S. A. Aly, J. Environ. Prot. (Irvine,. Calif). 2018, 09 (06), 636–651. DOI: https://doi.org/10.4236/jep.2018.96040
- 3X. H. Wang, X. Wang, G. Huppes, R. Heijungs, N. Q. Ren, J. Clean. Prod. 2015, 94, 278–283. DOI: https://doi.org/10.1016/j.jclepro.2015.02.007
- 4S. Guerra-Rodríguez, P. Oulego, E. Rodríguez, D. N. Singh, J. Rodríguez-Chueca, Water (Switzerland) 2020, 12 (5), 1–52. DOI: https://doi.org/10.3390/w12051431
10.3390/w12051431 Google Scholar
- 5E. Obotey Ezugbe, S. Rathilal, Membranes 2020, 10 (5), 1–28. DOI: https://doi.org/10.3390/membranes10050089
- 6A. Hafuka, T. Takahashi, K. Kimura, Biochem. Eng. J. 2020, 161, 107692. DOI: https://doi.org/10.1016/j.bej.2020.107692
- 7A. Bardhan, A. Akhtar, S. Subbiah, in Advancement in Polymer-Based Membranes for Water Remediation (Eds: S. K. Nayak, K. Dutta, J. M. Gohil), Elsevier, Amsterdam 2022.
- 8M. Laiq Ur Rehman, A. Iqbal, C. C. Chang, W. Li, M. Ju, Water Environ. Res. 2019, 91 (10), 1253–1271. DOI: https://doi.org/10.1002/wer.1219
- 9K. Anderson, P. Sallis, S. Uyanik, Handbook of Water and Wastewater Microbiology, Elsevier, Amsterdam 2003.
10.1016/B978-012470100-7/50025-X Google Scholar
- 10Z. Shi, K. Xing, R. Rameezdeen, C. W. K. Chow, Environ. Sci. Pollut. Res. 2024, 31 (14), 20792–20813. DOI: https://doi.org/10.1007/s11356-024-32560-2
- 11R. Kothari, A. K. Pandey, S. Kumar, V. V. Tyagi, S. K. Tyagi, Renew Sustain. Energy Rev. 2014, 39, 174–195. DOI: https://doi.org/10.1016/j.rser.2014.07.011
- 12K. Kimura, D. Honoki, T. Sato, Sep. Purif. Technol. 2017, 181, 37–43. DOI: https://doi.org/10.1016/j.seppur.2017.03.005
- 13E. L. Subtil, R. Almeria Ragio, H. G. Lemos, G. Scaratti, J. García, P. Le-Clech, Chem. Eng. J. 2022, 441, 136004. DOI: https://doi.org/10.1016/j.cej.2022.136004
- 14A. E. Uman, R. A. Bair, D. H. Yeh, Water (Switzerland). 2024, 16 (3), 1–16. DOI: https://doi.org/10.3390/w16030405
10.3390/w16030405 Google Scholar
- 15J. Radjenovic, M. Matošić, I. Mijatović, M. Petrovic, D. Barcelo, Handb. Environ. Chem. 2008, 5, 37–101. DOI: https://doi.org/10.1007/698_5_093
10.1007/698_5_093 Google Scholar
- 16S. A. Deowan, S. I. Bouhadjar, J. Hoinkis, in Advances in Membrane Technologies for Water Treatment (Eds: A. Basile, A. Cassano, N. K. Rastogi), Woodhead Publishing, Oxford 2015.
10.1016/B978-1-78242-121-4.00005-8 Google Scholar
- 17S. Judd, in Membranes for Industrial Wastewater Recovery and Re-use, Elsevier Science, 2003.
10.1016/B978-185617389-6/50003-5 Google Scholar
- 18R. W. Baker, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons, Ltd., Hoboken 2005.
- 19P. Yadav, N. Ismail, M. Essalhi, M. Tysklind, D. Athanassiadis, N. Tavajohi, J. Memb. Sci. 2021, 622, 118987. DOI: https://doi.org/10.1016/j.memsci.2020.118987
- 20F. Meng, S. R. Chae, A. Drews, M. Kraume, H. S. Shin, F. Yang, Water Res. 2009, 43 (6), 1489–1512. DOI: https://doi.org/10.1016/j.watres.2008.12.044
- 21G. R. Guillen, Y. Pan, M. Li, E. M. V Hoek, Ind. Eng. Chem. Res. 2011, 50 (7), 3798–3817. DOI: https://doi.org/10.1021/ie101928r
- 22A. Ayol, Y. O. Demiral, S. Güneş, J. Membr. Sci. Res. 2021, 7 (1), 55–58. DOI: https://doi.org/10.22079/JMSR.2020.120244.1330
10.22079/JMSR.2020.120244.1330 Google Scholar
- 23T. U. Rahman, H. Roy, M. R. Islam, M. Tahmid, A. Fariha, A. Mazumder, N. Tasnim, M. N. Pervez, Y. Cai, V. Naddeo, et al., Membranes J. Res. 2023, 13 (181), 1–28. DOI: https://doi.org/10.3390/membranes13020181
10.3390/membranes13020181 Google Scholar
- 24S. K. Lateef, B. Z. Soh, K. Kimura, Bioresour. Technol. 2013, 150, 149–155. DOI: https://doi.org/10.1016/j.biortech.2013.09.111
- 25Z. Jin, H. Gong, K. Wang, J. Hazard. Mater. 2015, 283, 824–831. DOI: https://doi.org/10.1016/j.jhazmat.2014.10.038
- 26Z. Jin, H. Gong, H. Temmink, H. Nie, J. Wu, J. Zuo, K. Wang, Chem. Eng. J. 2016, 292, 130–138. DOI: https://doi.org/10.1016/j.cej.2016.02.024
- 27H. Gong, Z. Jin, H. Xu, Q. Yuan, J. Zuo, J. Wu, K. Wang, J. Clean. Prod. 2019, 206, 307–314. DOI: https://doi.org/10.1016/j.jclepro.2018.09.209
- 28J. Xiong, S. Yu, Y. Hu, Y. Yang, X. C. Wang, Sci. Total Environ. 2019, 680, 35–43. DOI: https://doi.org/10.1016/j.scitotenv.2019.05.080
- 29T. A. Nascimento, M. P. Miranda, J. Water Process Eng. 2021, 39, 1–10. DOI: https://doi.org/10.1016/j.jwpe.2020.101733
- 30Y.-R. Chang, L. Yu-Jen, D.-J. Lee, J. Taiwan Inst. Chem. Eng. 2018, 94, 88–96. DOI: https://doi.org/10.1016/j.jtice.2017.12.019
10.1016/j.jtice.2017.12.019 Google Scholar
- 31K. Kimura, Y. Hane, Y. Watanabe, Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2005, 51 (6–7), 93–100. DOI: https://doi.org/10.2166/wst.2005.0626
- 32T. Zsirai, P. Buzatu, P. Aerts, S. Judd, Water Res. 2012, 46 (14), 4499–4507. DOI: https://doi.org/10.1016/j.watres.2012.05.004
- 33A. Salladini, M. Prisciandaro, D. Barba, Desalination 2007, 207 (1–3), 24–34. DOI: https://doi.org/10.1016/j.desal.2006.02.078
- 34C. Psoch, S. Schiewer, J. Memb. Sci. 2006, 283 (1–2), 273–280. DOI: https://doi.org/10.1016/j.memsci.2006.06.042
- 35S. Kaykhaii, I. Herrmann, A. Hedström, K. Nordqvist, I. Heidfors, M. Viklander, Water Reuse 2023, 13 (4), 634–646. DOI: https://doi.org/10.2166/wrd.2023.106
- 36M. E. Ersahin, H. Ozgun, R. K. Dereli, I. Ozturk, K. Roest, J. B. van Lier, Bioresour. Technol. 2012, 122, 196–206. DOI: https://doi.org/10.1016/j.biortech.2012.03.086
- 37S. O. Celik, N. Tufekci, I. Koyuncu, Water Supply 2022, 22 (2), 1624–1637. DOI: https://doi.org/10.2166/ws.2021.329
- 38T. Fairley-Wax, L. Raskin, S. J. Skerlos, ACS ES T Eng. 2022, 2 (5), 842–852. DOI: https://doi.org/10.1021/acsestengg.1c00394
- 39K. M. Wang, D. Cingolani, A. L. Eusebi, A. Soares, B. Je, E. J. Mcadam, 2018, 555, 125–133. DOI: https://doi.org/10.1016/j.memsci.2018.03.032
10.1016/j.memsci.2018.03.032 Google Scholar
- 40P. R. Bérubé, in Current Developments in Biotechnology and Bioengineering, Elsevier, Amsterdam 2020.
10.1016/B978-0-12-819809-4.00011-5 Google Scholar
- 41Z. Cui, T. Taha, J. Chem. Technol. Biotechnol. 2003, 78 (2–3), 249–253. DOI: https://doi.org/10.1002/jctb.763
- 42I. S. Chang, S. J. Judd, Process Biochem. 2002, 37 (8), 915–920. DOI: https://doi.org/10.1016/S0032-9592(01)00291-6
- 43A. Kola, Y. Ye, P. Le-Clech, V. Chen, J. Memb. Sci. 2014, 455, 320–329. DOI: https://doi.org/10.1016/j.memsci.2013.12.078
- 44C. Wang, M. Ding, T. C. A. Ng, H. Y. Ng, Chem. Eng. J. 2023, 466, 143226. DOI: https://doi.org/10.1016/j.cej.2023.143226
- 45C. Wang, T. C. A. Ng, M. Ding, H. Y. Ng, Water Res. 2022, 212, 118098. DOI: https://doi.org/10.1016/j.watres.2022.118098
- 46S. Mirmohamadsadeghi, K. Karimi, M. Tabatabaei, M. Aghbashlo, Bioresour. Technol. Reports. 2019, 7, 100202. DOI: https://doi.org/10.1016/j.biteb.2019.100202
10.1016/j.biteb.2019.100202 Google Scholar
- 47F. Hanum, L. C. Yuan, H. Kamahara, H. A. Aziz, Y. Atsuta, T. Yamada, H. Daimon, Front. Energy Res. 2019, 7, 1–7. DOI: https://doi.org/10.3389/fenrg.2019.00019
- 48J. C. Ortega-Bravo, J. Pavez, V. Hidalgo, I. Reyes-Caniupán, Á. Torres-Aravena, D. Jeison, Sustainability 2022, 14 (5), 1–11. DOI: https://doi.org/10.3390/su14052629
- 49H. Gong, Z. Jin, X. Wang, K. Wang, J. Environ. Sci. 2015, 32, 1–7. DOI: https://doi.org/10.1016/j.jes.2015.01.002
- 50J. Filer, H. H. Ding, S. Chang, Water. 2019, 11 (921), 1–29. DOI: https://doi.org/10.3390/w11050921
10.3390/w11050921 Google Scholar
- 51J. Ohemeng-Ntiamoah, T. Datta, Sci. Total Environ. 2019, 664, 1052–1062. DOI: https://doi.org/10.1016/j.scitotenv.2019.02.088
- 52T. A. Nascimento, F. R. Mejía, F. Fdz-Polanco, M. P. Miranda, Environ. Technol. (United Kingdom). 2017, 38 (20), 2562–2572. DOI: https://doi.org/10.1080/09593330.2016.1271017
- 53E. Ferrera, I. Ruigómez, L. Vera, J. Water Process Eng. 2024, 58, 1–12. DOI: https://doi.org/10.1016/j.jwpe.2023.104755
- 54K. Kimura, M. Yamakawa, A. Hafuka, Chemosphere 2021, 277, 130244. DOI: https://doi.org/10.1016/j.chemosphere.2021.130244
- 55Z. Jin, H. Gong, H. Temmink, H. Nie, J. Wu, J. Zuo, K. Wang, Chem. Eng. J. 2016, 292, 130–138. DOI: https://doi.org/10.1016/j.cej.2016.02.024
- 56M. C. Lavagnolo, F. Girotto, O. Hirata, R. Cossu, Waste Manag 2017, 66, 155–160. DOI: https://doi.org/10.1016/j.wasman.2017.05.005
- 57Q. Zhang, R. Li, B. Guo, L. Zhang, Y. Liu, Waste Manag 2021, 131, 453–461. DOI: https://doi.org/10.1016/j.wasman.2021.06.024
- 58A. Saha, L. Philip, Adv. Sustainable Syst.. 2025, 2500088, 1–14. DOI: https://doi.org/10.1002/adsu.202500088