Synergistic Acceleration of Adsorbent Material Development by DFT and ML for CO2 Capture
Corresponding Author
Jianjun Cai
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorQianlang Liang
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
Search for more papers by this authorMing Luo
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorCorresponding Author
Jianjun Cai
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
School of Metallurgy and Environment, Central South University, Changsha, 410083 China
E-mail: [email protected]
Search for more papers by this authorQianlang Liang
School of Architecture and Traffic, Guilin University of Electronic Technology, Guilin, 541004 China
Search for more papers by this authorMing Luo
School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013 China
Search for more papers by this authorAbstract
The development of high-performance solid adsorbents for CO2 capture is crucial for reducing carbon emissions and combating climate change. Density functional theory (DFT) has been widely used to explore the adsorption mechanisms of solid adsorbents, but its computational cost limits large-scale material screening. Machine learning (ML) as a data-driven approach promotes materials development. This paper reviews the synergistic integration of DFT and ML in the design and development of solid amine adsorbents, metal-organic framework materials, and calcium-based adsorbents. With high-quality training data generated by DFT, ML models can effectively predict material properties. In addition, the integration of ML accelerates high-throughput screening, significantly improving the speed and accuracy of material discovery. This review summarizes recent advances and perspectives in the application of computational methods for the rational design of solid adsorbents.
References
- 1Z. Liu, Z. Deng, S. J. Davis, P. Ciais, Nat. Rev. Earth Environ. 2024, 5 (4), 253–254. DOI: https://doi.org/10.1038/s43017-024-00532-2
- 2A. Zhumadilova, S. Zhigitova, M. Turalina, Sci. Horiz. 2023, 26 (6), 97–109. DOI: https://doi.org/10.48077/scihor6.2023.97
10.48077/scihor6.2023.97 Google Scholar
- 3F. Nath, M. N. Mahmood, N. Yousuf, Geoenergy Sci. Eng. 2024, 238, 212726. DOI: https://doi.org/10.1016/j.geoen.2024.212726
- 4H. F. Hasan, F. T. Al-Sudani, T. M. Albayati, I. K. Salih, H. N. Hharah, H. S. Majdi, N. M. Cata Saady, S. Zendehboudi, A. Amari, S. A. Gheni, Process Saf. Environ. Prot. 2024, 182, 975–988. DOI: https://doi.org/10.1016/j.psep.2023.12.025
- 5E. Benhelal, E. Shamsaei, M. I. Rashid, J. Environ. Sci. (China) 2021, 104, 84–101. DOI: https://doi.org/10.1016/j.jes.2020.11.020
- 6P. Zhang, K. Feng, L. Yan, Y. Guo, B. Gao, J. Li, Environ. Sci. Ecotechnology 2024, 17, 100295. DOI: https://doi.org/10.1016/j.ese.2023.100295
- 7H. Pang, A. Sun, H. Xu, G. Xiao, Chem. Eng. J. 2021, 425, 130675. DOI: https://doi.org/10.1016/j.cej.2021.130675
- 8Y. Yan, T. N. Borhani, S. G. Subraveti, K. N. Pai, V. Prasad, A. Rajendran, P. Nkulikiyinka, J. O. Asibor, Z. Zhang, D. Shao, L. Wang, W. Zhang, Y. Yan, W. Ampomah, J. You, M. Wang, E. J. Anthony, V. Manovic, P. T. Clough, Energy Environ. Sci. 2021, 14 (12), 6122–6157. DOI: https://doi.org/10.1039/d1ee02395k
- 9M. Rahimi, S. M. Moosavi, B. Smit, T. A. Hatton, Cell Rep. Phys. Sci. 2021, 2 (4), 100396. DOI: https://doi.org/10.1016/j.xcrp.2021.100396
- 10E. G. Al-Sakkari, A. Ragab, H. Dagdougui, D. C. Boffito, M. Amazouz, Sci. Total Environ. 2024, 917, 170085. DOI: https://doi.org/10.1016/j.scitotenv.2024.170085
- 11E. G. Al-Sakkari, A. Ragab, T. M. Y. So, M. Shokrollahi, H. Dagdougui, P. Navarri, A. Elkamel, M. Amazouz, J. Environ. Chem. Eng. 2023, 11 (5), 110732. DOI: https://doi.org/10.1016/j.jece.2023.110732
- 12N. Chiabaut, R. Faitout, Transp. Res. Part C: Emerg. Technol. 2021, 124, 102920. DOI: https://doi.org/10.1016/j.trc.2020.102920
- 13D. Zhang, Z. Lin, L. Xuan, M. Lu, B. Shi, J. Shi, F. He, M. Battino, L. Zhao, X. Zou, Food Chem. 2024, 439, 137978. DOI: https://doi.org/10.1016/j.foodchem.2023.137978
- 14X. Zhou, J. Sun, Y. Tian, B. Lu, Y. Hang, Q. Chen, Food Chem. 2020, 321, 126503. DOI: https://doi.org/10.1016/j.foodchem.2020.126503
- 15X. Chang, X. Huang, W. Xu, X. Tian, C. Wang, L. Wang, S. Yu, J. Food Process Eng. 2021, 44 (9), e13783. DOI: https://doi.org/10.1111/jfpe.13783
- 16F. Yang, J. Sun, J. Cheng, L. Fu, S. Wang, M. Xu, J. Food Process Eng. 2023, 46 (4), e14304. DOI: https://doi.org/10.1111/jfpe.14304
- 17E. Bonah, X. Huang, R. Yi, J. H. Aheto, R. Osae, M. Golly, J. Food Process Eng. 2019, 42 (6), e13236. DOI: https://doi.org/10.1111/jfpe.13236
- 18A. Raza, Y. Hu, Y. Lu, Eur. J. Agron. 2024, 160, 127297. DOI: https://doi.org/10.1016/j.eja.2024.127297
- 19Y. Zhu, S. Fan, M. Zuo, B. Zhang, Q. Zhu, J. Kong, Foods 2024, 13 (10), 1570. DOI: https://doi.org/10.3390/foods13101570
- 20J. Cheng, J. Sun, K. Yao, M. Xu, S. Wang, L. Fu, J. Sci. Food Agric. 2023, 103 (5), 2690–2699. DOI: https://doi.org/10.1002/jsfa.12376
- 21W. Zhu, Z. Feng, S. Dai, P. Zhang, X. Wei, Agriculture 2022, 12 (11), 1785. DOI: https://doi.org/10.3390/agriculture12111785
10.3390/agriculture12111785 Google Scholar
- 22Y. Liang, H. Lin, W. Kang, X. Shao, J. Cai, H. Li, Q. Chen, J. Sci. Food Agric. 2023, 103 (14), 6790–6799. DOI: https://doi.org/10.1002/jsfa.12777
- 23G. Qiu, H. Lu, X. Wang, C. Wang, S. Xu, X. Liang, C. Fan, Horticulturae 2023, 9 (8), 889. DOI: https://doi.org/10.3390/horticulturae9080889
- 24X. Li, H. Zhong, H. Yang, L. Li, Q. Wang, J. Chem. Inf. Model. 2024, 64 (16), 6361–6368. DOI: https://doi.org/10.1021/acs.jcim.4c00724
- 25M. Safarzadeh Khosrowshahi, A. Afshari Aghajari, M. Rahimi, F. Maleki, E. Ghiyabi, A. Rezanezhad, A. Bakhshi, E. Salari, H. Shayesteh, H. Mohammadi, Mater. Today Sustain. 2024, 27, 100900. DOI: https://doi.org/10.1016/j.mtsust.2024.100900
10.1016/j.mtsust.2024.100900 Google Scholar
- 26X. Deng, W. Yang, S. Li, H. Liang, Z. Shi, Z. Qiao, Appl. Sci. 2020, 10 (2), 569. DOI: https://doi.org/10.3390/app10020569
- 27P. Nkulikiyinka, Y. Yan, F. Güleç, V. Manovic, P. T. Clough, Energy AI 2020, 2, 100037. DOI: https://doi.org/10.1016/j.egyai.2020.100037
- 28Y. Yan, T. Mattisson, P. Moldenhauer, E. J. Anthony, P. T. Clough, Chem. Eng. J. 2020, 387, 124072. DOI: https://doi.org/10.1016/j.cej.2020.124072
- 29H. Wu, X. Wang, X. Wang, W. Su, Arabian J. Chem. 2024, 17 (2), 105507. DOI: https://doi.org/10.1016/j.arabjc.2023.105507
- 30H. Liang, K. Jiang, T.-A. Yan, G.-H. Chen, ACS Omega 2021, 6 (13), 9066–9076. DOI: https://doi.org/10.1021/acsomega.1c00100
- 31X. Wang, Y. Gao, E. Krzystowczyk, S. Iftikhar, J. Dou, R. Cai, H. Wang, C. Ruan, S. Ye, F. Li, Energy Environ. Sci. 2022, 15 (4), 1512–1528. DOI: https://doi.org/10.1039/D1EE02889H
- 32A. G. Yohannes, C. Lee, P. Talebi, D. H. Mok, M. Karamad, S. Back, S. Siahrostami, ACS Catal. 2023, 13 (13), 9007–9017. DOI: https://doi.org/10.1021/acscatal.3c01249
- 33H. Liu, Z. Liang, S. Wang, N. Ma, S. Chen, J. Environ. Manag. 2021, 292, 112722. DOI: https://doi.org/10.1016/j.jenvman.2021.112722
- 34F. Liu, S. Chen, Y. Gao, J. Colloid Interface Sci. 2017, 506, 236–244. DOI: https://doi.org/10.1016/j.jcis.2017.07.049
- 35P. Zang, J. Tang, H. Zhang, X. Wang, L. Cui, J. Chen, P. Zhao, Y. Dong, Chem. Eng. J. 2024, 485, 149938. DOI: https://doi.org/10.1016/j.cej.2024.149938
- 36H. Yan, J. Liu, G. Li, Y. Zhao, Y. Wang, C. Wu, W. Wu, R. Zhang, G. Zhang, Chem. Eng. J. 2024, 498, 155142. DOI: https://doi.org/10.1016/j.cej.2024.155142
- 37R. S. Madyal, J. S. Arora, RSC Adv. 2014, 4 (39), 20323–20333. DOI: https://doi.org/10.1039/c4ra00444b
- 38S. Zhang, H. Dong, A. Lin, C. Zhang, H. Du, J. Mu, J. Han, J. Zhang, F. Wang, ACS Sustainable Chem. Eng. 2022, 10 (39), 13185–13193. DOI: https://doi.org/10.1021/acssuschemeng.2c04492
- 39S. Li, Z. Huang, Y. Li, S. Deng, X. E. Cao, Energy AI 2025, 20, 100477. DOI: https://doi.org/10.1016/j.egyai.2025.100477
- 40J. Li, Y. Fan, R. Zhang, D. Ban, Z. Duan, X. Liu, L. Liu, Mater. Chem. Front. 2024, 8 (21), 3509–3527. DOI: https://doi.org/10.1039/D4QM00358F
- 41L. Wang, Y.-A. Li, F. Yang, Q.-K. Liu, J.-P. Ma, Y.-B. Dong, Inorg. Chem. 2014, 53 (17), 9087–9094. DOI: https://doi.org/10.1021/ic501100p
- 42Y. Zhang, X. Yu, Y. Hou, C. Liu, G. Xie, X. Chen, Mol. Catal. 2024, 555, 113851. DOI: https://doi.org/10.1016/j.mcat.2024.113851
- 43T. Ghanbari, F. Abnisa, W. M. A. Wan Daud, Sci. Total Environ. 2020, 707, 135090. DOI: https://doi.org/10.1016/j.scitotenv.2019.135090
- 44X. Qian, F. Sun, J. Sun, H. Wu, F. Xiao, X. Wu, G. Zhu, Nanoscale 2017, 9 (5), 2003–2008. DOI: https://doi.org/10.1039/C6NR07801J
- 45P. Kumar, B. Anand, Y. F. Tsang, K.-H. Kim, S. Khullar, B. Wang, Environ. Res. 2019, 176, 108488. DOI: https://doi.org/10.1016/j.envres.2019.05.019
- 46M. I. Severino, E. Gkaniatsou, F. Nouar, M. L. Pinto, C. Serre, Faraday Discuss. 2021, 231 (0), 326–341. DOI: https://doi.org/10.1039/D1FD00018G
- 47X. Dong, X. Liu, Y. Chen, M. Zhang, J. CO2 Util. 2018, 24, 64–72. DOI: https://doi.org/10.1016/j.jcou.2017.11.014
- 48S. Cai, L. Yu, E. Huo, Y. Ren, X. Liu, Y. Chen, Langmuir 2024, 40 (13), 6869–6877. DOI: https://doi.org/10.1021/acs.langmuir.3c03782
- 49Q. Shuai, W.-L. Li, C. Zhao, J. Yu, Mater. Today Commun. 2024, 40, 110050. DOI: https://doi.org/10.1016/j.mtcomm.2024.110050
- 50J. Lin, Z. Liu, Y. Guo, S. Wang, Z. Tao, X. Xue, R. Li, S. Feng, L. Wang, J. Liu, H. Gao, G. Wang, Y. Su, Nano Today 2023, 49, 101802. DOI: https://doi.org/10.1016/j.nantod.2023.101802
- 51Z. Zhang, X. Cao, C. Geng, Y. Sun, Y. He, Z. Qiao, C. Zhong, J. Membr. Sci. 2022, 650, 120399. DOI: https://doi.org/10.1016/j.memsci.2022.120399
- 52K. Guan, F. Xu, X. Huang, Y. Li, S. Guo, Y. Situ, Y. Chen, J. Hu, Z. Liu, H. Liang, X. Zhu, Y. Wu, Z. Qiao, J. Colloid Interface Sci. 2024, 662, 941–952. DOI: https://doi.org/10.1016/j.jcis.2024.02.098
- 53S. Achour, Z. Hosni, Can. J. Chem. Eng. 2024, 03 (5), 2161–2173. DOI: https://doi.org/10.1002/cjce.25509
10.1002/cjce.25509 Google Scholar
- 54T. Bailey, A. Jackson, R. A. Berbece, K. Wu, N. Hondow, E. Martin, J. Chem. Inf. Model. 2023, 63 (15), 4545–4551. DOI: https://doi.org/10.1021/acs.jcim.3c00135
- 55K. Choudhary, T. Yildirim, D. W. Siderius, A. G. Kusne, A. McDannald, D. L. Ortiz-Montalvo, Comput. Mater. Sci. 2022, 210, 111388. DOI: https://doi.org/10.1016/j.commatsci.2022.111388
- 56R. Anderson, J. Rodgers, E. Argueta, A. Biong, D. A. Gómez-Gualdrón, Chem. Mater. 2018, 30 (18), 6325–6337. DOI: https://doi.org/10.1021/acs.chemmater.8b02257
- 57R. Goeminne, L. Vanduyfhuys, V. Van Speybroeck, T. Verstraelen, J. Chem. Theory Comput. 2023, 19 (18), 6313–6325. DOI: https://doi.org/10.1021/acs.jctc.3c00495
- 58B. Zheng, F. L. Oliveira, R. Neumann Barros Ferreira, M. Steiner, H. Hamann, G. X. Gu, B. Luan, ACS Nano 2023, 17 (6), 5579–5587. DOI: https://doi.org/10.1021/acsnano.2c11102
- 59X. Ma, X. Huang, H. Zhang, X. Hu, T. Feng, Chem. Eng. J. 2023, 452, 139552. DOI: https://doi.org/10.1016/j.cej.2022.139552
- 60P. Yang, L. Duan, H. Tang, T. Cai, Z. Sun, Greenhouse Gases: Sci. Technol. 2018, 8 (6), 1110–1123. DOI: https://doi.org/10.1002/ghg.1822
- 61Y. Fan, J. G. Yao, Z. Zhang, M. Sceats, Y. Zhuo, L. Li, G. C. Maitland, P. S. Fennell, Fuel Process. Technol. 2018, 169, 24–41. DOI: https://doi.org/10.1016/j.fuproc.2017.09.006
- 62P. Yang, Z. Sun, L. Duan, H. Tang, Greenhouse Gases: Sci. Technol. 2020, 10 (2), 472–483. DOI: https://doi.org/10.1002/ghg.1905
- 63D. He, H. Gong, Y. Chen, Z. Jiao, Y. Liu, X. Zhang, C. Qin, H. Yin, Fuel 2021, 295, 120634. DOI: https://doi.org/10.1016/j.fuel.2021.120634
- 64L. Liu, D. Hong, X. Guo, J. CO2 Util. 2017, 22, 155–163. DOI: https://doi.org/10.1016/j.jcou.2017.09.022
- 65X. Yan, Y. Li, J. Zhao, Z. Wang, Energy Fuels 2020, 34 (5), 6197–6208. DOI: https://doi.org/10.1021/acs.energyfuels.0c00972
- 66D. He, Z. Ou, C. Qin, T. Deng, J. Yin, G. Pu, Chem. Eng. J. 2020, 379, 122348. DOI: https://doi.org/10.1016/j.cej.2019.122348