Impact of Ring-Closed Ratio on Properties of Benzoxazine via Solvent-Free Continuous Flow Synthesis
Corresponding Author
Changlu Zhou
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorSentao Lin
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuqiang Wang
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorTianxing Zhao
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuhang Tian
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorXianhao Gui
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorCorresponding Author
Changlu Zhou
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
E-mail: [email protected]
Search for more papers by this authorSentao Lin
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuqiang Wang
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorTianxing Zhao
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorYuhang Tian
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorXianhao Gui
East China University of Science and Technology, Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, No. 130 Meilong Road, Shanghai, 200237 China
Search for more papers by this authorAbstract
A solvent-free benzoxazine (Bz) synthesis process was established using continuous flow, utilizing p-cresol, n-butylamine, and an aqueous formaldehyde solution as raw materials to prepare Bz monomer of C-ba. The optimization of process parameters resulted in a p-cresol conversion of 93.5 % ± 1.1 %, a yield of 86.9 % ± 0.8 %, and a ring-closed ratio (RCR) of 90.0 % ± 1.0 % under optimal conditions. The continuous flow process not only enhanced the RCR from 88.1 % to 90.0 % but also significantly reduced the reaction time by 96.7 % compared to traditional batch processes. Additionally, C-ba with varying RCR values were investigated for their thermal properties, hydrophobicity, and antibacterial performance.
Supporting Information
Filename | Description |
---|---|
ceat70002-sup-0001-SuppMat.docx352.4 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1P. S. Gaikwad, A. S. Krieg, P. P. Deshpande, S. U. Patil, J. A. King, M. Maiaru, G. M. Odegard, ACS Appl. Polym. Mater. 2021, 3 (12), 6407–6415. DOI: https://doi.org/10.1021/acsapm.1c01164
- 2E. B. Caldona, A. C. C. De Leon, B. B. Pajarito, R. C. Advincula, Appl. Surf. Sci. 2017, 422, 162–171. DOI: https://doi.org/10.1016/j.apsusc.2017.05.083
- 3L. Zhang, J. Mao, S. Wang, Y. Zheng, X. Liu, Y. Cheng, Curr. Org. Chem. 2019, 23 (7), 809–822. DOI: https://doi.org/10.2174/1385272823666190422130917
- 4C. J. Raorane, T. Periyasamy, R. Haldhar, S. P. Asrafali, V. Raj, S.-C. Kim, Materials 2023, 16 (6), 2249. DOI: https://doi.org/10.3390/ma16062249
- 5X. Yuan, X. Su, Y. Wang, L. Liu, R. Li, C. Wang, ACS Appl. Polym. Mater. 2023, 5 (7), 5650–5661. DOI: https://doi.org/10.1021/acsapm.3c00943
- 6J. Chen, R. Jian, K. Yang, W. Bai, C. Huang, Y. Lin, B. Zheng, F. Wei, Q. Lin, Y. Xu, J. Cleaner Prod. 2021, 318. DOI: https://doi.org/10.1016/j.jclepro.2021.128527
- 7X. Kang, Z. Lu, W. Feng, J. Wang, X. Fang, Y. Xu, Y. Wang, B. Liu, T. Ding, Y. Ma, D. Pan, R. R. Patil, V. Murugadoss, Adv. Compos. Hybrid Mater. 2021, 4 (1), 127–137. DOI: https://doi.org/10.1007/s42114-020-00198-6
- 8C. Zhou, X. Lu, Z. Xin, J. Liu, Corros. Sci. 2013, 70, 145–151. DOI: https://doi.org/10.1016/j.corsci.2013.01.023
- 9Z. Zhou, C. Li, R. Wang, H. Tao, D. Yang, S. Qin, X. Meng, C. Zhou, Prog. Org. Coat. 2022, 171. DOI: https://doi.org/10.1016/j.porgcoat.2022.107059
- 10X. Sha, P. Fei, B. Shen, J. Chen, Z. Liu, Y. Sun, J. Miao, ACS Appl. Polym. Mater. 2023, 5 (4), 3015–3022. DOI: https://doi.org/10.1021/acsapm.3c00183
- 11S. Ohashi, K. Zhang, Q. Ran, C. Arza, P. Froimowicz, H. Ishida, Advanced and Emerging Polybenzoxazine Science and Technology, Elsevier, Amsterdam 2017, pp. 1053–1082.
10.1016/B978-0-12-804170-3.00049-4 Google Scholar
- 12N. N. Ghosh, B. Kiskan, Y. Yagci, Prog. Polym. Sci. 2007, 32 (11), 1344–1391. DOI: https://doi.org/10.1016/j.progpolymsci.2007.07.002
- 13W. J. Burke, R. P. Smith, C. Weatherbee, J. Am. Chem. Soc. 1952, 74 (3), 602–605. DOI: https://doi.org/10.1021/ja01123a007
- 14N. Teng, S. Yang, J. Dai, S. Wang, J. Zhao, J. Zhu, X. Liu, ACS Sustain. Chem. Eng. 2019, 7 (9), 8715–8723. DOI: https://doi.org/10.1021/acssuschemeng.9b00607
- 15M. R. Vengatesan, S. Devaraju, D. Kannaiyan, J. K. Song, M. Alagar, Polym. Int. 2013, 62 (1), 127–133. DOI: https://doi.org/10.1002/pi.4337
- 16V. Duhan, S. Yadav, C. Len, B. Lochab, Green Chem. 2024, 26 (1), 483–497. DOI: https://doi.org/10.1039/D3GC03522K
- 17V. Duhan, B. Lochab, Macromolecules 2024, 57 (22), 10812–10823. DOI: https://doi.org/10.1021/acs.macromol.4c01358
- 18H. Ishida, US Patent US5543516, 1996.
- 19M. H. Reis, T. P. Varner, F. A. Leibfarth, Macromolecules 2019, 52 (9), 3551–3557. DOI: https://doi.org/10.1021/acs.macromol.9b00454
- 20D. M. Roberge, L. Ducry, N. Bieler, P. Cretton, B. Zimmermann, Chem. Eng. Technol. 2005, 28 (3), 318–323. DOI: https://doi.org/10.1002/ceat.200407128
- 21M. Movsisyan, E. I. Delbeke, J. K. Berton, C. Battilocchio, S. V. Ley, C. V. Stevens, Chem. Soc. Rev. 2016, 45 (18), 4892–4928. DOI: https://doi.org/10.1039/c5cs00902b
- 22B. Gutmann, D. Cantillo, C. O. Kappe, Angew. Chem., Int. Ed. 2015, 54 (23), 6688–6728. DOI: https://doi.org/10.1002/anie.201409318
- 23Y. Mao, C. Zhou, C. Wang, Z. Xin, Chin. Chem. Lett. 2023, 34 (8), 108061. DOI: https://doi.org/10.1016/j.cclet.2022.108061
- 24H. Lv, J. Wang, Z. Shu, G. Qian, X. Duan, Z. Yang, X. Zhou, J. Zhang, Chin. Chem. Lett. 2023, 34 (4), 107710. DOI: https://doi.org/10.1016/j.cclet.2022.07.053
- 25C. Zhou, M. Fu, H. Xie, Y. Gong, J. Chen, J. Liu, Z. Xin, Ind. Eng. Chem. Res. 2021, 60 (4), 1675–1683. DOI: https://doi.org/10.1021/acs.iecr.0c05903
- 26J. Liu, Y. Wuliu, J. Dai, J. Hu, X. Liu, Eur. Polym. J. 2021, 157, 110671. DOI: https://doi.org/10.1016/j.eurpolymj.2021.110671
- 27K. Hemvichian, A. Laobuthee, S. Chirachanchai, H. Ishida, Polym. Degrad. Stab. 2002, 76 (1), 1–15. DOI: https://doi.org/10.1016/s0141-3910(01)00260-9
- 28C. Zhang, Y. Deng, Y. Zhang, P. Yang, Y. Gu, Chin. Chem. Lett. 2015, 26 (3), 348–352. DOI: https://doi.org/10.1016/j.cclet.2014.12.005
- 29H. Ishida, Handbook of Benzoxazine Resins, Elsevier, Amsterdam 2011, pp. 3–81.
10.1016/B978-0-444-53790-4.00046-1 Google Scholar
- 30J. Dunkers, H. Ishida, Spectrochim. Acta, A 1995, 51 (5), 855–867. DOI: https://doi.org/10.1016/0584-8539(94)00187-G
- 31A. Riisio, O. Wichmann, R. Sillanpaa, Lett. Org. Chem. 2010, 7 (4), 298–305. DOI: https://doi.org/10.2174/157017810791130531
- 32J. H. Xu, J. Tan, S. W. Li, G. S. Luo, Chem. Eng. J. 2008, 141 (1), 242–249. DOI: https://doi.org/10.1016/j.cej.2007.12.030
- 33Z. Zhou, Q. Si, L. Wan, S. Kuo, C. Zhou, Z. Xin, Ind. Eng. Chem. Res. 2022, 61 (7), 2947–2954. DOI: https://doi.org/10.1021/acs.iecr.1c04771
- 34L. Zhang, S. Goh, S. J. P. Lee, Polymer 1998, 39 (20), 4841–4847. DOI: https://doi.org/10.1016/S0032-3861(97)10167-7
- 35J. Wang, M. K. Cheung, Y. L. Mi, Polymer 2001, 42 (7), 3087–3093. DOI: https://doi.org/10.1016/s0032-3861(00)00643-1
- 36H. Dong, Z. Xin, X. Lu, Y. Lv, Polymer 2011, 52 (4), 1092–1101. DOI: https://doi.org/10.1016/j.polymer.2011.01.009