Comparative Study of Thermodynamic Performances: Ammonia vs. Methanol SOFC for Marine Vessels
Corresponding Author
Ph.D., Research Prof. Phan Anh Duong
Division of Marine System Engineering, Korea Maritime and Ocean University, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorPh.D. Bo Rim Ryu
Division of Marine System Engineering, Korea Maritime and Ocean University, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
Search for more papers by this authorPh.D. Tran The Nam
Department of Science and Technology, Vietnam Maritime University, 180000 Hai Phong, Vietnam
Search for more papers by this authorPh.D. candidate Yoon Hyeok Lee
R&D Center, DongHwa Entec, 46742 Busan, Republic of Korea
Search for more papers by this authorPh.D. Jinwon Jung
Fuel Gas Technology Center, Korea Marine Equipment Research Institute, 46744 Busan, South Korea
Search for more papers by this authorPh.D. Prof. Jin-Kwang Lee
Department of Mechanical Convergence Engineering, Gyeongsang National University, 52849 Jinju, South Korea
Search for more papers by this authorCorresponding Author
Ph.D. Prof. Hokeun Kang
Department of Coast Guard Studies, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorCorresponding Author
Ph.D., Research Prof. Phan Anh Duong
Division of Marine System Engineering, Korea Maritime and Ocean University, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorPh.D. Bo Rim Ryu
Division of Marine System Engineering, Korea Maritime and Ocean University, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
Search for more papers by this authorPh.D. Tran The Nam
Department of Science and Technology, Vietnam Maritime University, 180000 Hai Phong, Vietnam
Search for more papers by this authorPh.D. candidate Yoon Hyeok Lee
R&D Center, DongHwa Entec, 46742 Busan, Republic of Korea
Search for more papers by this authorPh.D. Jinwon Jung
Fuel Gas Technology Center, Korea Marine Equipment Research Institute, 46744 Busan, South Korea
Search for more papers by this authorPh.D. Prof. Jin-Kwang Lee
Department of Mechanical Convergence Engineering, Gyeongsang National University, 52849 Jinju, South Korea
Search for more papers by this authorCorresponding Author
Ph.D. Prof. Hokeun Kang
Department of Coast Guard Studies, Korea Maritime and Ocean University, 727, Taejong-ro, Yeongdo-gu, 49112 Busan, Republic of Korea
E-mail: [email protected]; [email protected]
Search for more papers by this authorAbstract
In response to escalating environmental concerns and the imperative to institute effective energy management strategies, the pursuit of alternative fuels has emerged as a pivotal endeavor for realizing sustainable energy solutions. Methanol and ammonia have surfaced as particularly promising and environmentally friendly liquid fuels, holding significant potential for aiding in the attainment of decarbonization objectives and addressing global energy requirements. This research proposes and scrutinizes a sophisticated cogeneration system integrating solid oxide fuel cells (SOFCs), gas turbine (GT), steam Rankine cycle, and organic Rankine cycle. Direct utilization of ammonia and methanol as fuel in this intricate system is examined, with the design and modeling facilitated through the utilization of Aspen HYSYS V.12.1. The thermodynamic performance of the proposed system is rigorously assessed by employing the foundational principles of the first and second laws of thermodynamics. The direct SOFCs fueled by ammonia and methanol exhibit notable energy efficiencies of 64.25 % and 58.42 %, respectively. Remarkably, the amalgamated systems showcase heightened energy efficiencies, witnessing a commendable increase of 12.64 % and 10.66 % when powered by ammonia and methanol, respectively, as compared to individual SOFC systems. Examination of exergy destruction reveals the SOFC as the principal contributor, with electrochemical and chemical processes constituting the primary sources of irreversibility. Additionally, explicit values for exergy destruction in the GT, afterburner, and heat exchanger components are provided. A comprehensive parametric study underscores the pivotal role of the fuel utilization factor (Uf), identifying a value of 0.85 as optimal and significantly augmenting the thermodynamic efficiency of the system. This analysis not only substantiates the potential of ammonia and methanol as effective carriers for hydrogen but also underscores the efficacy of waste heat recovery as a viable strategy for enhancing the overall thermodynamic performance of an SOFC system. The findings presented herein contribute valuable insights, paving the way for the strategic utilization of alternative fuels and cogeneration systems in the broader context of sustainable and environmentally conscious energy solutions.
References
- 1IMO MEPC, Int. Marit. Organ. 2021, 11 (11), 951–952.
- 2P. A. Duong, B. R. Ryu, J. Jung, H. Kang, J. Loss Prev. Process Ind. 2023, 85, 105167.
- 3P. Anh, B. Rim, H. Lee, H. Kang, Energy Rep. 2023, 10, 1521–1537. DOI: https://doi.org/10.1016/j.egyr.2023.08.028
- 4www.imo.org (Accessed on March 01, 2024).
- 5P. Anh, B. Rim, J. Jung, H. Kang, J. Loss Prev. Process Ind. 2023, 85, 105167. DOI: https://doi.org/10.1016/j.jlp.2023.105167
10.1016/j.jlp.2023.105167 Google Scholar
- 6I.-S. Kim, B.-U. Jeong, M.-K. Song, D. Nam, J. Adv. Mar. Eng. Technol. 2022, 46 (5), 261–269. DOI: https://doi.org/10.5916/jamet.2022.46.5.261
10.5916/jamet.2022.46.5.261 Google Scholar
- 7 RESOLUTION MEPC.377(80), Int. Marit. Organ. 2023, 80, 1–17.
- 8H. K. J. Jung, P. A. Duong, B. R. Ryu, J. Adv. Mar. Eng. Technol. 2023, 47 (3), 105–119.
10.5916/jamet.2023.47.3.105 Google Scholar
- 9J.-K. Kim, S.-H. Bang, S.-I. Lee, J. Adv. Mar. Eng. Technol. 2022, 46 (6), 447–454. DOI: https://doi.org/10.5916/jamet.2022.46.6.447
10.5916/jamet.2022.46.6.447 Google Scholar
- 10P. Ni, X. Wang, H. Li, Fuel 2020, 279, 1–16. DOI: https://doi.org/10.1016/j.fuel.2020.118477
10.1016/j.fuel.2020.118477 Google Scholar
- 11R. Li, Y. Liu, Q. Wang, Mar. Policy 2022, 143, 105125. DOI: https://doi.org/10.1016/j.marpol.2022.105125
- 12C. B. B. Farias, R. C. S. Barreiros, M. F. da Silva, A. A. Casazza, A. Converti, L. A. Sarubbo, Energies 2022, 15 (1), 1–20. DOI: https://doi.org/10.3390/en15010311
10.3390/en15010311 Google Scholar
- 13Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, Energy Convers. Manage. 2021, 228, 113729. DOI: https://doi.org/10.1016/j.enconman.2020.113729
- 14S. S. Rathore, S. Biswas, D. Fini, A. P. Kulkarni, S. Giddey, Int. J. Hydrogen Energy 2021, 46 (71), 35365–35384. DOI: https://doi.org/10.1016/j.ijhydene.2021.08.092
- 15P. Fragiacomo, G. De Lorenzo, O. Corigliano, Energy Procedia 2018, 148, 543–550. DOI: https://doi.org/10.1016/j.egypro.2018.08.005
- 16Z. Wan, Y. Tao, J. Shao, Y. Zhang, H. You, Energy Convers. Manage. 2021, 228, 113729. DOI: https://doi.org/10.1016/j.enconman.2020.113729
- 17B. R. Ryu, D. P. Anh, Y. H. Lee, H. K. Kang, J. Adv. Mar. Eng. Technol. 2021, 45 (2), 70–78. DOI: https://doi.org/10.5916/jamet.2021.45.2.70
10.5916/jamet.2021.45.2.70 Google Scholar
- 18K. E. Lamb, M. D. Dolan, D. F. Kennedy, Int. J. Hydrogen Energy 2019, 44 (7), 3580–3593. DOI: https://doi.org/10.1016/j.ijhydene.2018.12.024
- 19Korean Register, Report on Ammonia-Fueled Ships, Vol. 1, Korea Register, Busan, Korea 2021.
- 20P. Han, H. Topsoe, Sci. Bull. 2019, 67, 1530–1534. DOI: https://doi.org/10.1016/j.scib.2022.06.023
10.1016/j.scib.2022.06.023 Google Scholar
- 21B. Zincir, Int. J. Hydrogen Energy 2022, 47 (41), 18148–18168. DOI: https://doi.org/10.1016/j.ijhydene.2022.03.281
- 22 ABS Sustainable Whitepaper, Methanol as Marine Fuel, American Bureau of Shipping, February 2021.
- 23S. A. Hajimolana, M. A. Hussain, W. M. A. W. Daud, M. H. Chakrabarti, Chem. Eng. Res. Des. 2012, 90 (11), 1871–1882. DOI: https://doi.org/10.1016/j.cherd.2012.03.004
- 24Q. Ma, R. R. Peng, L. Tian, G. Meng, Electrochem. Commun. 2006, 8 (11), 1791–1795. DOI: https://doi.org/10.1016/j.elecom.2006.08.012
- 25P. A. Duong, B. Ryu, C. Kim, J. Lee, H. Kang, Energies 2022, 15, 3331. https://doi.org/10.3390/en15093331
- 26A. Yapicioglu, I. Dincer, Renewable Sustainable Energy Rev. 2019, 103, 96–108. DOI: https://doi.org/10.1016/j.rser.2018.12.023
- 27A. Fuerte, R. X. Valenzuela, M. J. Escudero, L. Daza, J. Power Sources 2009, 192 (1), 170–174. DOI: https://doi.org/10.1016/j.jpowsour.2008.11.037
- 28A. Afif, N. Radenahmad, Q. Cheok, S. Shams, J. H. Kim, A. K. Azad, Renewable Sustainable Energy Rev. 2016, 60, 822–835. DOI: https://doi.org/10.1016/j.rser.2016.01.120
- 29C. Zamfirescu, I. Dincer, J. Power Sources 2008, 185 (1), 459–465. DOI: https://doi.org/10.1016/j.jpowsour.2008.02.097
- 30E. Baniasadi, I. Dincer, Int. J. Hydrogen Energy 2011, 36 (17), 11128–11136. DOI: https://doi.org/10.1016/j.ijhydene.2011.04.234
- 31W. S. Chai, Y. Bao, P. Jin, G. Tang, L. Zhou, Renewable Sustainable Energy Rev., 147, 111254, 2021, DOI: https://doi.org/10.1016/j.rser.2021.111254
- 32M. Akturk, J. K. Seo, J. Adv. Mar. Eng. Technol. 2023, 47 (3), 143–153. DOI: https://doi.org/10.5916/jamet.2023.47.3.143
10.5916/jamet.2023.47.3.143 Google Scholar
- 33A. Valera-Medina, et al., Energy and Fuels 2021, 35 (9), 6964–7029. DOI: https://doi.org/10.1021/acs.energyfuels.0c03685
- 34M. Akturk, J. K. Seo, J. Adv. Mar. Eng. Technol. 2023, 47 (3), 143–153. DOI: https://doi.org/10.5916/jamet.2023.47.3.143
10.5916/jamet.2023.47.3.143 Google Scholar
- 35A. Wojcik, H. Middleton, I. Damopoulos, J. Van Herle, J. Power Sources 2003, 118 (1–2), 342–348. DOI: https://doi.org/10.1016/S0378-7753(03)00083-1
- 36P. A. Duong, B. Ryu, J. Jung, H. Kang, Appl. Sci. 2022, 12 (12), 6287. DOI: https://doi.org/10.3390/app12126287
- 37L. van Biert, M. Godjevac, K. Visser, P. V. Aravind, J. Power Sources 2016, 327, 345–364. DOI: https://doi.org/10.1016/j.jpowsour.2016.07.007
- 38H. Lee, I. Jung, G. Roh, Y. Na, H. Kang, Energies 2020, 13, 1. DOI: https://doi.org/10.3390/en13010224
- 39K. A. Adamson, P. Pearson, J. Power Sources 2000, 86 (1), 548–555. DOI: https://doi.org/10.1016/S0378-7753(99)00404-8
- 40C. Wang, Y. Li, C. Xu, T. Badawy, A. Sahu, C. Jiang, Fuel 2019, 248, 76–84. DOI: https://doi.org/10.1016/j.fuel.2019.02.128
- 41A. A. Kulikovsky, Electrochim. Acta 2008, 53 (22), 6391–6396. DOI: https://doi.org/10.1016/j.electacta.2008.04.046
- 42O. F. Atacan, D. Ouellette, C. O. Colpan, Int. J. Hydrogen Energy 2017, 42 (4), 2669–2679. DOI: https://doi.org/10.1016/j.ijhydene.2016.06.214
- 43A. Calabriso, L. Cedola, L. Del Zotto, F. Rispoli, S. G. Santori, J. Cleaner Prod. 2015, 88, 23–28. DOI: https://doi.org/10.1016/j.jclepro.2014.06.087
- 44P. A. Duong, B. R. Ryu, S. S. Kyu, H. Jeon, H. Kang, Int. J. Nav. Archit. Ocean Eng. 2023, 15, 100543. DOI: https://doi.org/10.1016/j.ijnaoe.2023.100543
- 45M. S. Alias, S. K. Kamarudin, A. M. Zainoodin, M. S. Masdar, Int. J. Hydrogen Energy 2020, 45 (38), 19620–19641. DOI: https://doi.org/10.1016/j.ijhydene.2020.04.202
- 46G. Jeerh, M. Zhang, S. Tao, J. Mater. Chem. A 2021, 9 (2), 727–752. DOI: https://doi.org/10.1039/d0ta08810b
- 47H. Zhou, Y. Wu, L. Zhao, Energy Rep. 2023, 9, 5042–5052. DOI: https://doi.org/10.1016/j.egyr.2023.04.005
- 48B. R. Ryu, P. A. Duong, H. Kang, Int. J. Nav. Archit. Ocean Eng. 2023, 15, 100524. DOI: https://doi.org/10.1016/j.ijnaoe.2023.100524
- 49H. Miyaoka, H. Miyaoka, T. Ichikawa, T. Ichikawa, Y. Kojima, Int. J. Hydrogen Energy 2018, 43 (31), 14486–14492. DOI: https://doi.org/10.1016/j.ijhydene.2018.06.065
- 50E. C. Blanco, A. Sánchez, M. Martín, P. Vega, Renewable Sustainable Energy Rev. 2023, 175, 113195. DOI: https://doi.org/10.1016/j.rser.2023.113195
- 51P. Fragiacomo, G. de Lorenzo, O. Corigliano, Procedia Manuf. 2020, 42, 259–266. DOI: https://doi.org/10.1016/j.promfg.2020.02.082
10.1016/j.promfg.2020.02.082 Google Scholar
- 52G. Cinti, L. Barelli, G. Bidini, AIP Conf. Proc. 2019, 2191, 020048. DOI: https://doi.org/10.1063/1.5138781
10.1063/1.5138781 Google Scholar
- 53T. Parikhani, H. Azariyan, R. Behrad, H. Ghaebi, J. Jannatkhah, Renewable Energy 2020, 145, 1158–1175. DOI: https://doi.org/10.1016/j.renene.2019.06.100
- 54O. Corigliano, G. De Lorenzo, P. Fragiacomo, AIMS Energy 2021, 9 (5), 934–990. DOI: https://doi.org/10.3934/energy.2021044
- 55F. Ishak, I. Dincer, C. Zamfirescu, J. Power Sources 2012, 202, 157–165. DOI: https://doi.org/10.1016/j.jpowsour.2011.10.142
- 56P. A. Duong, B. R. Ryu, H. Lee, H. Kang, Energy Rep. 2023, 10, 1521–1537. DOI: https://doi.org/10.1016/j.egyr.2023.08.028
- 57T. Meng, et al., Int. J. Hydrogen Energy 2023, 48 (79), 30887–30898. DOI: https://doi.org/10.1016/j.ijhydene.2023.04.222
- 58Y. Hu, C. Han, W. Li, Q. Hu, H. Wu, Z. Luo, Int. J. Hydrogen Energy 2023, 48 (12), 4649–4664. DOI: https://doi.org/10.1016/j.ijhydene.2022.10.274
- 59Q. Xu, L. Xia, Q. He, Z. Guo, M. Ni, Appl. Energy 2021, 291, 116832. DOI: https://doi.org/10.1016/j.apenergy.2021.116832
- 60P. A. Duong, B. Ryu, J. Jung, H. Kang, Sustainability 2022, 14 (19), 12496. DOI: https://doi.org/10.3390/su141912496
- 61A. Nafees, R. Abdul Rasid, IOP Conf. Ser.: Mater. Sci. Eng. 2019, 702, 1. DOI: https://doi.org/10.1088/1757-899X/702/1/012017
10.1088/1757-899X/702/1/012017 Google Scholar
- 62L. Yoon-Ho, Int. J. Refrig. 2019, 101, 218–229. DOI: https://doi.org/10.1016/j.ijrefrig.2019.03.022
- 63K. H. M. Al-Hamed, I. Dincer, Energy 2021, 220, 119771. DOI: https://doi.org/10.1016/j.energy.2021.119771
- 64M. F. Ezzat, I. Dincer, Energy 2020, 194, 116750. DOI: https://doi.org/10.1016/j.energy.2019.116750
- 65M. H. Ahmadi, et al., Entropy 2018, 20 (7), 1–22. DOI: https://doi.org/10.3390/e20070484
- 66V. M. Janardhanan, V. Heuveline, O. Deutschmann, J. Power Sources 2007, 172 (1), 296–307. DOI: https://doi.org/10.1016/j.jpowsour.2007.07.008
- 67F. Yilmaz, M. Ozturk, Int. J. Hydrogen Energy 2022, 47, 1–16. DOI: https://doi.org/10.1016/j.ijhydene.2022.01.249
- 68K. H. M. Al-Hamed, I. Dincer, eTransportation 2019, 2, 100027. DOI: https://doi.org/10.1016/j.etran.2019.100027
10.1016/j.etran.2019.100027 Google Scholar
- 69R. Lan, S. Tao, Front. Energy Res. 2014, 2, 3–6. DOI: https://doi.org/10.3389/fenrg.2014.00035
10.3389/fenrg.2014.00035 Google Scholar
- 70C. Jackson, et al., Feasibility Study 2020, 33, 1–70.
- 71F. Ishak, I. Dincer, C. Zamfirescu, J. Power Sources 2012, 212, 73–85. DOI: https://doi.org/10.1016/j.jpowsour.2012.03.083
- 72T. Okanishi, et al., Fuel Cells 2017, 17 (3), 383–390. DOI: https://doi.org/10.1002/fuce.201600165
- 73M. Kishimoto, N. Furukawa, T. Kume, H. Iwai, H. Yoshida, Int. J. Hydrogen Energy 2017, 42 (4), 2370–2380. DOI: https://doi.org/10.1016/j.ijhydene.2016.11.183
- 74H. Purnama, et al., Catal. Lett. 2004, 94 (1–2), 61–68. DOI: https://doi.org/10.1023/b:catl.0000019332.80287.6b
- 75K. Faungnawakij, R. Kikuchi, K. Eguchi, J. Power Sources 2006, 161 (1), 87–94. DOI: https://doi.org/10.1016/j.jpowsour.2006.04.091
- 76J. H. Kim, S. W. Park, H. J. Kim, J. K. Seo, J. Adv. Mar. Eng. Technol. 2024, 48 (1), 37–45. DOI: https://doi.org/10.5916/jamet.2024.48.1.37
10.5916/jamet.2024.48.1.37 Google Scholar
- 77O. Siddiqui, I. Dincer, Therm. Sci. Eng. Prog. 2018, 5, 568–578. DOI: https://doi.org/10.1016/j.tsep.2018.02.011
10.1016/j.tsep.2018.02.011 Google Scholar
- 78Y. Liu, J. Han, H. You, Int. J. Hydrogen Energy 2019, 44 (56), 29700–29710. DOI: https://doi.org/10.1016/j.ijhydene.2019.02.201
- 79H. Zhao, X. Hou, Q. Yang, Energy Power Eng. 2018, 10 (02), 43–64. DOI: https://doi.org/10.4236/epe.2018.102004
- 80D. Georgis, S. S. Jogwar, A. S. Almansoori, P. Daoutidis, Comput. Chem. Eng. 2011, 35 (9), 1691–1704. DOI: https://doi.org/10.1016/j.compchemeng.2011.02.006
- 81A. Perna, M. Minutillo, E. Jannelli, V. Cigolotti, S. W. Nam, J. Han, Appl. Energy 2018, 231, 1216–1229. DOI: https://doi.org/10.1016/j.apenergy.2018.09.138
- 82J. Milewski, A. Szczęśniak, Ł. Szabłowski, J. Power Sources 2021, 502, 1–8. DOI: https://doi.org/10.1016/j.jpowsour.2021.229948
10.1016/j.jpowsour.2021.229948 Google Scholar
- 83M. Ebrahimi, I. Moradpoor, Energy Convers. Manage. 2016, 116, 120–133. DOI: https://doi.org/10.1016/j.enconman.2016.02.080
- 84T. H. Yen, et al., J. Power Sources 2010, 195 (5), 1454–1462. DOI: https://doi.org/10.1016/j.jpowsour.2009.09.021
- 85N. Chitgar, M. Moghimi, Energy 2020, 197, 117162. DOI: https://doi.org/10.1016/j.energy.2020.117162
- 86M. Aminyavari, A. H. Mamaghani, A. Shirazi, B. Najafi, F. Rinaldi, Appl. Therm. Eng. 2016, 108, 833–846. DOI: https://doi.org/10.1016/j.applthermaleng.2016.07.180
- 87K. Venkitesh, J. Daniel, M. Sreekanth, IOP Conf. Ser.: Mater. Sci. Eng. 2021, 1128 (1), 012036. DOI: https://doi.org/10.1088/1757-899x/1128/1/012036
- 88V. H. Rangel-Hernández, A. M. Niño-Avendaño, J. J. Ramírez-Minguela, J. M. Belman-Flores, F. Elizalde-Blancas, Appl. Exergy 2018, 65–86. DOI: https://doi.org/10.5772/intechopen.74201
10.5772/intechopen.74201 Google Scholar
- 89Y. Chen, et al., Energy Convers. Manage. 2019, 186, 66–81. DOI: https://doi.org/10.1016/j.enconman.2019.02.036
- 90M. Mehrpooya, H. Dehghani, S. M. Ali Moosavian, J. Power Sources 2016, 306, 107–123. DOI: https://doi.org/10.1016/j.jpowsour.2015.11.103
- 91T. Anderson, P. Vijay, M. O. Tade, Chem. Eng. Res. Des. 2014, 92 (2), 295–307. DOI: https://doi.org/10.1016/j.cherd.2013.07.025
- 92K. Selvam, Y. Komatsu, A. Sciazko, S. Kaneko, N. Shikazono, Energy Convers. Manage. 2021, 249, 114839. DOI: https://doi.org/10.1016/j.enconman.2021.114839
- 93 Alliance Consulting International, Methanol Inst. 2008, 5, 1–37.
- 94D. Oryshchyn, N. F. Harun, D. Tucker, K. M. Bryden, L. Shadle, Appl. Energy 2018, 228, 1953–1965. DOI: https://doi.org/10.1016/j.apenergy.2018.07.004
- 95M. Ni, D. Y. C. Leung, M. K. H. Leung, J. Power Sources 2008, 183 (2), 682–686. DOI: https://doi.org/10.1016/j.jpowsour.2008.05.022
- 96A. Hauch, S. H. Jensen, S. Ramousse, M. Mogensen, J. Electrochem. Soc. 2006, 153 (9), A1741. DOI: https://doi.org/10.1149/1.2216562
- 97M. Lang, C. Bohn, M. Henke, G. Schiller, C. Willich, F. Hauler, J. Electrochem. Soc. 2017, 164 (13), F1460–F1470. DOI: https://doi.org/10.1149/2.1541713jes
- 98H. Alhumade, A. Fathy, A. Al-Zahrani, M. J. Rawa, H. Rezk, Mathematics 2021, 9 (9), 1–19. DOI: https://doi.org/10.3390/math9091066
10.3390/math9091066 Google Scholar
- 99Z. Stoynov, et al., Appl. Energy 2018, 228, 1584–1590. DOI: https://doi.org/10.1016/j.apenergy.2018.06.138
- 100F. Priyakorn, N. Laosiripojana, S. Assabumrungrat, J. Sustainable Energy Environ. 2011, 2, 187–194.
- 101N. Thambiraj, I. Waernhus, C. Suciu, A. Vik, A. C. Hoffmann, Energies 2020, 13 (7), 1–19. DOI: https://doi.org/10.3390/en13071624
10.3390/en13071624 Google Scholar