Evaluation of the Dry Deposition of Particles Emitted by Biomass Combustion
Corresponding Author
Dr. Maria Angélica Martins Costa
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Correspondence: Dr. Maria Angélica Martins Costa ([email protected]), Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University–UNESP, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil.Search for more papers by this authorBruna Sampaio de Mello
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorAirton dos Santos Olimpio Dias
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorGabriela Donato
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorDr. Kelly Johana Dussan
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorDr. Arnaldo Sarti
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorCorresponding Author
Dr. Maria Angélica Martins Costa
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Correspondence: Dr. Maria Angélica Martins Costa ([email protected]), Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University–UNESP, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil.Search for more papers by this authorBruna Sampaio de Mello
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorAirton dos Santos Olimpio Dias
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorGabriela Donato
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorDr. Kelly Johana Dussan
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorDr. Arnaldo Sarti
São Paulo State University–UNESP, Department of Engineering, Physics and Mathematics, Institute of Chemistry, Rua Prof. Francisco Degni, 55, 14800-900 Araraquara, SP, Brazil
Search for more papers by this authorAbstract
The dry deposition flux of particles smaller than 2.5 µm was investigated considering agricultural and urban regions. The concentrations, size distributions, and chemical characterization of particulate matter (PM) were evaluated and related to emission sources. The concentrations of fine PM were associated to the highest number of wildfire outbreaks. The results of the PM samples combined with the analyses of the air mass trajectories evidenced that the transport of this pollutant may have come from regions with industries that use biomass as fuel. The predominant water-soluble ions in coarse and fine particulate were nitrate, potassium, calcium, magnesium, potassium, sulfate, and nitrate, respectively. The deposition fluxes of potassium, nitrate, and sulfate ions were higher during the sugarcane harvest than during the off-season.
Supporting Information
Filename | Description |
---|---|
ceat202200477-sup-0001-misc_information.pdf578.2 KB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 L. Fajersztajn et al., J. Transp. Health 2019, 14, 100565. DOI: https://doi.org/10.1016/j.jth.2019.05.004
- 2 C. Alves, Quim. Nova 2005, 28 (5), 859–870. DOI: https://doi.org/10.1590/S0100-40422005000500025
- 3 S. Tong, L. Kong, K. Yang, J. Shen, L. Chen, S. Jin, C. Wang, F. Sha, L. Wang, Atmos. Environ. 2020, 238, 117756. DOI: https://doi.org/10.1016/j.atmosenv.2020.117756
- 4www.epa.gov/clean-air-act-overview/clean-air-act-requirements-and-history (Accessed on May 16, 2020)
- 5 S. L. Mkoma, G. O. da Rocha, J. S. S. Domingos, J. V. S. Santos, M. P. Cardoso, R. L. da Silva, J. B. de Andrade, An. Acad. Bras. Cienc. 2014, 86 (1), 37–55. DOI: https://doi.org/10.1590/0001-3765201420130234
- 6 H. Samae, S. Tekasakul, P. Tekasakul, M. Furuuchi, Chemosphere 2021, 262, 127846. DOI: https://doi.org/10.1016/j.chemosphere.2020.127846
- 7 G. O. da Rocha, A. G. Allen, A. A. Cardoso, Environ. Sci. Technol. 2005, 39 (14), 5293–5301. DOI: https://doi.org/10.1021/es048007u
- 8 M. D. L. Souza, Estudo Da Distribuição de Tamanho e Composição Iônica de Aerossóis e Seus Efeitos Na Capacidade de Nuclear Gotas de Nuvens, Ph.D. Thesis, Universidade Estadual Paulista, Sao Paulo 2016.
- 9 A. G. Allen, A. A. Cardoso, G. O. da Rocha, Atmos. Environ. 2004, 38 (30), 5025–5038. DOI: https://doi.org/10.1016/j.atmosenv.2004.06.019
- 10 S. K. Sharma, T. K. Mandal, Urban Clim. 2017, 21, 106–122. DOI: https://doi.org/10.1016/J.UCLIM.2017.05.009
- 11 G. Pellerin et al., J. Aerosol Sci. 2017, 114, 107–117. DOI: https://doi.org/10.1016/j.jaerosci.2017.09.004
- 12 W. G. N. Slinn, Atmos. Environ. 1982, 16 (7), 1785–1794. DOI: https://doi.org/10.1016/0004-6981(82)90271-2
- 13 L. Zhang, S. Gong, J. Padro, L. Barrie, Atmos. Environ. 2001, 35 (3), 549–560. DOI: https://doi.org/10.1016/S1352-2310(00)00326-5
- 14 S. C. Pryor et al., Tellus, Ser. B: Chem. Phys. Meteorol. 2008, 60 (1), 42–75. DOI: https://doi.org/10.1111/j.1600-0889.2007.00298.x
- 15 S. C. Pryor, R. J. Barthelmie, A. M. Spaulding, S. E. Larsen, A. Petroff, J. Geophys. Res. 2009, 114 (D18), D18212. DOI: https://doi.org/10.1029/2009JD012248
- 16 V. Wasiuta, M. J. Lafrenière, A. L. Norman, J. Hydrol. 2015, 523, 563–573. DOI: https://doi.org/10.1016/J.JHYDROL.2015.01.073
- 17 Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (Eds: J. I. Seinfeld, S. N. Pandis), John Wiley & Sons, Hoboken, NJ 2006.
- 18 E. Y. Nho-Kim, M. Michou, V. H. Peuch, Atmos. Environ. 2004, 38 (13), 1933–1942. DOI: https://doi.org/10.1016/j.atmosenv.2004.01.002
- 19 M. A. M. Costa, H. M. Fogarin, A. F. M. Costa, L. O. Pires, D. D. v. Silva, M. Lima-Souza, K. J. Dussán, in Nanomaterials: Ecotoxicity, Safety, and Public Perception (Eds: M. Rai, J. K. Biswas), Springer, Cham, Switzerland 2018.
- 20 M. A. M. Costa, H. M. Fogarin, S. G. C. de Almeida, K. J. Dussán, in Nanotechnology in the Life Sciences (Eds: H. Sarma, S. J. Joshi, R. Prasad, J. Jampilek), Springer, Cham, Switzerland 2021.
- 21 I. Kopanakis, K. Eleftheriadis, N. Mihalopoulos, N. Lydakis-Simantiris, E. Katsivela, D. Pentari, P. Zarmpas, M. Lazaridis, Atmos. Res. 2012, 106, 93–107. DOI: https://doi.org/10.1016/j.atmosres.2011.11.011
- 22 J. Nirmalkar, M. K. Deb, Air Qual., Atmos. Health 2016, 9 (3), 241–249. DOI: https://doi.org/10.1007/s11869-015-0330-y
- 23 Y. Cheng, G. Engling, K. B. He, F. K. Duan, Y. L. Ma, Z. Y. Du, J. M. Liu, M. Zheng, R. J. Weber, Atmos. Chem. Phys. 2013, 13 (15), 7765–7781. DOI: https://doi.org/10.5194/acp-13-77652013
- 24 G. Valotto, S. Squizzato, M. Masiol, D. Zannoni, F. Visin, G. Rampazzo, Atmos. Res. 2014, 143, 371–379. DOI: https://doi.org/10.1016/j.atmosres.2014.03.007
- 25 K. B. Budhavant, P. S. P. Rao, P. D. Safai, R. D. Gawhane, M. P. Raju, C. M. Mahajan, P. G. Satsangi, Aerosol Air Qual. Res. 2012, 12 (4), 561–570. DOI: https://doi.org/10.4209/aaqr.2011.12.0233
- 26 M. Shohel, M. Kistler, M. A. Rahman, A. Kasper-Giebl, J. S. Reid, A. Salam, Environ. Sci. Pollut. Res. 2018, 25 (5), 4558–4569. DOI: https://doi.org/10.1007/s11356-017-0695-6