A Negative Effect of Niobium-Doped Ceria on Soot Oxidation Activity‡
Sunaina S. Patil
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorSahana Naik
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorMadhura D. Ramesh
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorHarshini Dasari
Manipal Academy of Higher Education (MAHE), Manipal Institute of Technology, Chemical Engineering Department, 576104 Manipal, Udupi, Karnataka, India
Search for more papers by this authorCorresponding Author
Hari Prasad Dasari
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Correspondence: Hari Prasad Dasari ([email protected]), National Institute of Technology Karnataka, Chemical Engineering Department, Surathkal, Mangalore, Karnataka, 575025, India.Search for more papers by this authorSunaina S. Patil
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorSahana Naik
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorMadhura D. Ramesh
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Search for more papers by this authorHarshini Dasari
Manipal Academy of Higher Education (MAHE), Manipal Institute of Technology, Chemical Engineering Department, 576104 Manipal, Udupi, Karnataka, India
Search for more papers by this authorCorresponding Author
Hari Prasad Dasari
National Institute of Technology Karnataka, Chemical Engineering Department, 575025 Surathkal, Mangalore, Karnataka, India
Correspondence: Hari Prasad Dasari ([email protected]), National Institute of Technology Karnataka, Chemical Engineering Department, Surathkal, Mangalore, Karnataka, 575025, India.Search for more papers by this authorPresented at the International Chemical Engineering Conference on “100 Glorious Years of Chemical Engineering & Technology”, Jalandhar, India, September 2021.
Abstract
Niobium-doped ceria catalysts were synthesized to study soot oxidation activity. X-Ray diffraction (XRD) and Raman analysis of the samples revealed the presence of a fluorite structure of CeO2 for all the doped samples. The T50 temperature of the pure CeO2 sample was more significant than that of bare soot. The high catalytic activity of the CeO2 catalyst can be attributed to the low crystallite size, high facet ratio, and the large Brunauer-Emmett-Teller (BET) surface area as compared to Nb-doped samples. The activation energy calculated by both Ozawa and KAS methods were found to be low for CeO2 when compared to Nb-doped samples. CeO2 resulted in better soot oxidation activity with low activation energy.
References
- 1 G. Thrimurthulu, K. N. Rao, D. Devaiah, B. M. Reddy, Res. Chem. Intermed. 2012, 38, 1847–1855. DOI: https://doi.org/10.1007/s11164-012-0508-y
- 2 D. Mukherjee, B. G. Rao, B. M. Reddy, Appl. Catal., B 2016, 197, 105–115. DOI: https://doi.org/10.1016/j.apcatb.2016.03.042
- 3 L. W. Stanek, J. S. Brown, J. Stanek, J. Gift, D. L. Costa, Toxicol. Sci. 2011, 120 (S1), S8–S27. DOI: https://doi.org/10.1093/toxsci/kfq367
- 4 V. Gautham, C. Chingakham, J. John, V. Sajith, Appl. Nanosci. 2020, 10, 2429–2438. DOI: https://doi.org/10.1007/s13204-020-01425-8
- 5 S. Wagloehner, M. Nitzer-Noski, S. Kureti, Chem. Eng. J. 2015, 259, 492–504. DOI: https://doi.org/10.1016/j.cej.2014.08.021
- 6 E. Heracleous, A. A. Lemonidou, J. Catal. 2006, 237, 162–174. DOI: https://doi.org/10.1016/j.jcat.2005.11.002
- 7 B. R. Stanmore, J. F. Brilhac, P. Gilot, Carbon 2001, 39, 2247–2268. DOI: https://doi.org/10.1016/S0008-6223(01)00109-9
- 8 B. Guan, R. Zhan, H. Lin, Z. Huang, J. Environ. Manage. 2015, 154, 225–258. DOI: https://doi.org/10.1016/j.jenvman.2015.02.027
- 9 L. I. U. Shuang, W. U. Xiaodong, W. Duan, R. A. N. Rui, J. Rare Earths 2015, 33 (6), 567–590. DOI: https://doi.org/10.1016/S1002-0721(14)60457-9
- 10 I. Shajahan, J. Ahn, P. Nair, S. Medisetti, S. Patil, V. Niveditha, G. .U. B. Babu, H. P. Dasari, J. H. Lee, Mater. Chem. Phys. 2018, 216, 136–142. DOI: https://doi.org/10.1016/j.matchemphys.2018.05.078
- 11 D. H. Prasad, J. W. Son, B. K. Kim, H. W. Lee, J. H. Lee, J. Eur. Ceram. Soc. 2008, 28 (16), 3107–3112. DOI: https://doi.org/10.1016/j.jeurceramsoc.2008.05.021
- 12 X. Li, K. Blinn, Y. Fang, M. Liu, M. A. Mahmoud, S. Cheng, L. A. Bottomley, M. El-Sayed, M. Liu, Phys. Chem. Chem. Phys. 2012, 14, 5919–5923. DOI: https://doi.org/10.1039/c2cp40091j
- 13 D. R. Mullins, Surf. Sci. Rep. 2015, 70 (1), 42–85. DOI: https://doi.org/10.1016/j.surfrep.2014.12.001
- 14 P. Venkataswamy, K. N. Rao, D. Jampaiah, D. Mukherjee, B. M. Reddy, Appl. Catal., B 2015, 162, 122–132. DOI: https://doi.org/10.1007/s10562-016-1811-9
- 15 S. Damyanova, B. Pawelec, K. Arishtirova, M. V. M. Huerta, J. L. G. Fierro, Appl. Catal., A 2008, 337 (1), 86–96. DOI: https://doi.org/10.1016/j.apcata.2007.12.005
- 16 M. Lykaki, E. Pachatouridou, E. Iliopoulou, S. A. C. Carabineiro, M. Konsolakis, RSC Adv. 2017, 7, 6160–6169. DOI: https://doi.org/10.1039/C6RA26712B
- 17 B. A. A. L. V. Setten, M. Makkee, J. A. Moulijn, Catal. Rev. Sci. Eng. 2001, 43, 489–564. DOI: https://doi.org/10.1081/CR-120001810
- 18 B. M. Reddy, P. Bharali, A. Gode, T. Ae, P. Saikia, A. Lakshmi, K. Ae, S. E. Park, Catal. Lett. 2008, 123, 327–333. DOI: https://doi.org/10.1007/s10562-008-9427-3
- 19 P. Sudarsanam, K. Kuntaiah, B. M. Reddy, New J. Chem. 2014, 38, 5991–6001. DOI: https://doi.org/10.1039/c4nj01274g
- 20 D. H. Prasad, S. Y. Park, H. I. Ji, H. R. Kim, J. W. Son, B. K. Kim, H. W. Lee, J. H. Lee, J. Phys. Chem. C 2012, 116 (5), 3467–3476. DOI: https://doi.org/10.1021/jp207107j
- 21 S. S. Patil, H. Prasad, H. Dasari, Nano-Struct. Nano-Objects 2019, 20, 1–7. DOI: https://doi.org/10.1016/j.nanoso.2019.100388
- 22 D. Devaiah, T. T. Suzuki, T. Boningari, P. G. Smirniotis, B. M. Reddy, RSC Adv. 2015, 5 (38), 30275–30285. DOI: https://doi.org/10.1039/C5RA00557D
- 23 T. Vinodkumar, D. N. Durgasri, S. Maloth, B. M. Reddy, J. Chem. Sci. 2015, 127 (7), 1145–1153. DOI: https://doi.org/10.1007/s12039-015-0891-1
- 24 A. P. Anantharaman, H. J. Gadiyar, M. Surendran, S. A. Rao, H. P. Dasari, H. Dasari, U. B. B. Gara, Chem. Pap. 2018, 72, 3179–3188. DOI: https://doi.org/10.1007/s11696-018-0532-5
- 25 A. P. Anantharaman, H. P. Dasari, H. Dasari, G. U. B. Babu, Appl. Catal., A 2018, 566, 181–189. DOI: https://doi.org/10.1016/j.apcata.2018.08.019
- 26
S. Patil, H. P. Dasari, Mater. Sci. Energy Technol.
2019, 2 (3), 485–489. DOI: https://doi.org/10.1016/j.mset.2019.05.005
10.1016/j.mset.2019.05.005 Google Scholar
- 27
S. D. Neelapala, H. Dasari, Mater. Sci. Energy Technol.
2018, 1 (2), 155–159. DOI: https://doi.org/10.1016/j.mset.2018.06.009
10.1016/j.mset.2018.06.009 Google Scholar
- 28 I. Atribak, A. Bueno-López, A. García-García, J. Mol. Catal. A: Chem. 2009, 300, 103–110. DOI: https://doi.org/10.1016/j.molcata.2008.10.043
- 29 M. Capdevila-Cortada, G. Vilé, D. Teschner, J. Pérez-Ramírez, N. López, Appl. Catal., B 2016, 197, 299–312. DOI: https://doi.org/10.1016/j.apcatb.2016.02.035
- 30 A. Getsoian, Z. Zhai, A. T. Bell, J. Am. Chem. Soc. 2014, 136 (39), 13684–13697. DOI: https://doi.org/10.1021/ja5051555
- 31 X. Wu, Q. Liang, D. Weng, Z. Lu, Catal Commun. 2007, 8, 2110–2114. DOI: https://doi.org/10.1016/j.catcom.2007.04.023
- 32 K. Kim, J. D. Yoo, S. Lee, M. Bae, J. Bae, W. C. Jung, J. W. Han, ACS Appl. Mater. Interfaces 2017, 9 (18), 15449–15458. DOI: https://doi.org/10.1021/acsami.7b01844
- 33 B. M. Reddy, G. Thrimurthulu, L. Katta, Y. Yamada, S. E. Park, J. Phys. Chem. C 2009, 113 (36), 15882–15890. DOI: https://doi.org/10.1021/jp903644y
- 34 K. Krishna, A. Bueno-López, M. Makkee, J. A. Moulijn, Appl. Catal., B 2007, 75, 210–220. DOI: https://doi.org/10.1016/j.apcatb.2007.04.009
- 35 A. P. Anantharaman, J. Gadiyar, M. Surendran, A. S. Rao, H. P. Dasari, H. Dasari, Chem. Pap. 2018, 72, 3179–3188. DOI: https://doi.org/10.1007/s11696-018-0532-5
- 36 D. N. Durgasri, T. Vinodkumar, F. Lin, I. Alxneit, B. M. Reddy, Appl. Surf. Sci. 2014, 314, 592–598. DOI: https://doi.org/10.1016/j.apsusc.2014.07.036
- 37 A. P. Anantharaman, J. Geethu, M. Rishab, H. Prasad, J. H. Lee, H. Dasari, G. U. B. Babu, Mol. Catal. 2018, 451, 247–254. DOI: https://doi.org/10.1016/j.mcat.2018.01.033
- 38 Q. Liang, X. Wu, D. Weng, Z. Lu, Catal Commun. 2008, 9, 202–206. DOI: https://doi.org/10.1016/j.catcom.2007.06.007
- 39 F. Bin, C. Song, G. Lv, J. Song, K. Wang, X. Li, Proc. Combust. Inst. 2013, 34 (2), 2303–2311. DOI: https://doi.org/10.1016/j.proci.2012.07.075
- 40 R. López-Fonseca, U. Elizundia, I. Landa, M. A. Gutie, J. R. Gonza, Appl. Catal., B 2005, 61, 150–158. DOI: https://doi.org/10.1016/j.apcatb.2005.04.016
- 41 T. Andana, M. Piumetti, S. Bensaid, N. Russo, D. Fino, R. Pirone, Nanoscale Res. Lett. 2016, 11, 278. DOI: https://doi.org/10.1186/s11671-016-1494-6
- 42 P. Li, X. Chen, Y. Li, J. W. Schwank, Catal. Today 2019, 327, 90–115. DOI: https://doi.org/10.1016/j.cattod.2018.05.059
- 43 T. Okuhara, Chem. Rev. 2002, 102 (10), 3641–3665. DOI: https://doi.org/10.1021/cr0103569
- 44 S. Pengpanich, V. Meeyoo, T. Rirksomboon, J. Chem. Eng. Jpn. 2005, 38 (1), 49–53. DOI: https://doi.org/10.1252/jcej.38.49
- 45 V. S. Braga, F. A. C. Garcia, J. A. Dias, S. C. L. Dias, J. Catal. 2007, 247 (1), 68–77. DOI: https://doi.org/10.1016/j.jcat.2006.12.022
- 46 P. Legutko, J. Gryboś, M. Fedyna, J. Janas, A. Wach, J. Szlachetko, A. Adamski, X. Yu, Z. Zhao, A. Kotarba, Z. Sojka, Catalysts 2020, 10 (12), 1390. DOI: https://doi.org/10.3390/catal10121390
- 47 E. P. Mahofa, T. B. Narsaiah, P. Kumar, C. S. Chakra, A. Aftabtalab, Int. J. Eng. Res. Technol. 2014, 3 (9), 48–51.
- 48 A. M. Hernández-Giménez, L. P. D. S. Xavier, A. Bueno-López, Appl. Catal., A 2013, 462–463, 100–106. DOI: https://doi.org/10.1016/j.apcata.2013.04.035
- 49 H. Ranji-Burachaloo, S. Masoomi-Godarzi, A. A. Khodadadi, Y. Mortazavi, Appl. Catal., B 2016, 182, 74–84. DOI: https://doi.org/10.1016/j.apcatb.2015.09.019
- 50 A. P. Anantharaman, H. P. Dasari, J. H. Lee, H. Dasari, G. U. B. Babu, Catal. Lett. 2017, 147 (12), 3004–3016. DOI: https://doi.org/10.1007/s10562-017-2181-7
- 51 E. Aneggi, D. Wiater, C. D. Leitenburg, J. Llorca, A. Trovarelli, ACS Catal. 2014, 4, 172–181. DOI: https://doi.org/10.1021/cs400850r
- 52 S. I. Suárez-Vázquez, A. Cruz-López, C. E. Molina-Guerrero, A. I. Sánchez-Vázquez, C. Macías-Sotelo, Catalysts 2018, 8 (2), 1–11. DOI: https://doi.org/10.3390/catal8020071
- 53 K. Krishna, A. Bueno-López, M. Makkee, J. A. Moulijn, Appl. Catal., B 2007, 75, 189–200. DOI: https://doi.org/10.1016/j.apcatb.2007.04.010
- 54 D. H. Prasad, S. Y. Park, E. O. Oh, H. Ji, H. R. Kim, K. J. Yoon, J. W. Son, J. H. Lee, Appl. Catal., A 2012, 447–448, 100–106. DOI: https://doi.org/10.1016/j.apcata.2012.09.008
- 55 T. Ozawa, Bull. Chem. Soc. Jpn. 1965, 38 (11), 1881–1886. DOI: https://doi.org/10.1246/bcsj.38.1881
- 56 T. Ozawa, Thermochim. Acta 1992, 203, 159–165. DOI: https://doi.org/10.1016/0040-6031(92)85192-X
- 57 R. López-Fonseca, I. Landa, U. Elizundia, M. A. Gutiérrez-Ortiz, J. R. González-Velasco, Chem. Eng. J. 2007, 129 (1–3), 41–49. DOI: https://doi.org/10.1016/j.cej.2006.10.029
- 58 D. Chen, X. Gao, D. Dollimore, Thermochim. Acta 1993, 215, 109–117. DOI: https://doi.org/10.1016/0040-6031(93)80085-O
- 59 M. Salavati-Niasari, N. Mir, F. Davar, Polyhedron 2009, 28 (6), 1111–1114. DOI: https://doi.org/10.1016/j.poly.2009.01.026
- 60 A. M. Raba, J. B. Ruíz, M. R. Joya, Mater. Res. 2016, 19 (6), 1381–1387. DOI: https://doi.org/10.1590/1980-5373-MR-2015-0733
- 61 R. D. Shannon, Acta Cryst. 1976, A32, 751–767. DOI: https://doi.org/10.1107/S0567739476001551
- 62 T. A. Na, L. I. U. Jimmy, S. Wenjie, Chin. J. Catal. 2013, 34 (5), 838–850. DOI: https://doi.org/10.1016/S1872-2067(12)60573-7
- 63 H. T. Kreissl, M. M. J. Li, Y. Peng, K. Nakagawa, T. J. N. Hooper, J. V. Hanna, A. Shepherd, T. Wu, Y. Soo, S. C. E. Tsang, J. Am. Chem. Soc. 2017, 139, 12670–12680. DOI: https://doi.org/10.1021/jacs.7b06856
- 64
C. Cao, D. Ford, S. Bishnoi, T. Proslier, B. Albee, E. Hommerding, A. Korczakowski, L. Cooley, G. Ciovati, J. F. Zasadzinski, Phys. Rev. ST Accel. Beams.
2013, 16 (6), 1–9. DOI: https://doi.org/10.1103/PhysRevSTAB.16.064701
10.1103/PhysRevSTAB.16.064701 Google Scholar
- 65 J. D. Keck, P. D. Wilcox, Ferroelectrics 1980, 27 (1), 99–102. DOI: https://doi.org/10.1080/00150198008226074
- 66 S. Bejugama, A. K. Pandey, J. Alloys Compd. 2018, 765, 1049–1054. DOI: https://doi.org/10.1016/j.jallcom.2018.06.280
- 67
H. Vu, D. Nguyen, J. G. Fisher, W. H. Moon, S. Bae, H. G. Park, B. G. Park, J. Asian Ceram. Soc.
2013, 1, 170–177. DOI: https://doi.org/10.1016/j.jascer.2013.05.002
10.1016/j.jascer.2013.05.002 Google Scholar
- 68 E. Ramírez-Cabrera, N. Laosiripojana, A. Atkinson, D. Chadwick, Catal. Today 2003, 78, 433–438. DOI: https://doi.org/10.1016/S0920-5861(02)00324-3
- 69 K. Ahn, D. S. Yoo, D. H. Prasad, H. Lee, Y. Chung, J. Lee, Chem. Mater. 2012, 24, 4261–4267.
- 70 J. P. A. Neeft, M. Makkee, J. A. Moulijn, Chem. Eng. J. 1996, 64, 295–302. DOI: https://doi.org/10.1016/S0923-0467(96)03138-7
- 71 P. Palmisano, N. Russo, P. Fino, D. Fino, C. Badini, Appl. Catal., B 2006, 69, 85–92. DOI: https://doi.org/10.1016/j.apcatb.2006.06.002
- 72 C. S. Shenoy, S. S. Patil, P. Govardhan, A. Shourya, H. P. Dasari, Emiss. Control Sci. Technol. 2019, 5, 342–352. DOI: https://doi.org/10.1007/s40825-019-00144-z
- 73 K. Rajvanshi, S. S. Patil, Lakhanlal, H. P. Dasari, M. B. Saidutta, H. Dasari, Chem. Pap. 2020, 74, 4581–4592. DOI: https://doi.org/10.1007/s11696-020-01275-2