Synthesis and Characterization of Polycarbonate/TiO2 Ultrafiltration Membranes: Critical Flux Determination
Corresponding Author
Habib Etemadi
University of Bonab, Department of Polymer Science and Engineering, Bonab, Iran
Correspondence: Habib Etemadi ([email protected]), Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran.Search for more papers by this authorAtefeh Amirjangi
University of Bonab, Department of Polymer Science and Engineering, Bonab, Iran
Search for more papers by this authorNaser Ghasemian
University of Bonab, Department of Chemical Engineering, Bonab, Iran
Search for more papers by this authorElham Shokri
University of Bonab, Department of Chemical Engineering, Bonab, Iran
Search for more papers by this authorCorresponding Author
Habib Etemadi
University of Bonab, Department of Polymer Science and Engineering, Bonab, Iran
Correspondence: Habib Etemadi ([email protected]), Department of Polymer Science and Engineering, University of Bonab, Bonab, Iran.Search for more papers by this authorAtefeh Amirjangi
University of Bonab, Department of Polymer Science and Engineering, Bonab, Iran
Search for more papers by this authorNaser Ghasemian
University of Bonab, Department of Chemical Engineering, Bonab, Iran
Search for more papers by this authorElham Shokri
University of Bonab, Department of Chemical Engineering, Bonab, Iran
Search for more papers by this authorAbstract
A novel polycarbonate (PC) membrane was modified with titanium dioxide via nonsolvent-induced phase separation method to improve its hydrophilicity and antifouling properties in a submerged membrane system for the removal of humic acid (HA) both with and without polyaluminum chloride (PAC) coagulant. The effect of TiO2 additive on the morphology and performance of the nanocomposite membranes was studied by atomic force microscopy, field emission scanning electron microscopy, energy dispersive X-ray, mechanical properties, water contact angle, porosity, pure water flux, rejection tests, and antifouling parameters. The obtained results revealed that a higher critical flux was achieved by the PC/TiO2 nanocomposite membrane. The flux recovery ratio of the neat PC membrane increased with the addition of TiO2 nanoparticles and without PAC coagulant. HA removal for the PC nanocomposite membrane was higher than that of the neat PC membrane with and without PAC coagulant.
References
- 1 J. Dasgupta, S. Chakraborty, J. Sikder, R. Kumar, D. Pal, S. Curcio, E. Drioli, Sep. Purif. Technol. 2014, 133, 55–68.
- 2
R. W. Baker, Membrane Technology and Applications, John Wiley & Sons, New York
2012.
10.1002/9781118359686 Google Scholar
- 3 A. Sumisha, G. Arthanareeswaran, Y. L. Thuyavan, A. Ismail, S. Chakraborty, Ecotoxicol. Environ. Saf. 2015, 121, 174–179.
- 4 S. Chakraborty, E. Drioli, L. Giorno, Biomass Bioenergy 2012, 46, 574–583.
- 5 L. Liu, M. Son, S. Chakraborty, C. Bhattacharjee, H. Choi, Desalin. Water Treat. 2013, 51 (31–33), 6194–6200.
- 6 S. Xia, J. Nan, R. Liu, G. Li, Desalination 2004, 170 (1), 41–47.
- 7 R. Abedini, S. M. Mousavi, R. Aminzadeh, Desalination 2011, 277 (1–3), 40–45.
- 8 S. B. Teli, S. Molina, A. Sotto, E. G. Calvo, J. Abajob, Ind. Eng. Chem. Res. 2013, 52 (27), 9470–9479.
- 9 M. Safarpour, A. Khataee, V. Vatanpour, Sep. Purif. Technol. 2015, 140, 32–42.
- 10 M. Delavar, G. Bakeri, M. Hosseini, Chem. Eng. Res. Des. 2017, 120, 240–253.
- 11 A. Idris, Z. Man, A. S. Maulud, J. Appl. Polym. Sci. 2017, 134 (38), 45310.
- 12 S. Nazemidashtarjandi, S. A. Mousavi, D. Bastani, J. Water Process Eng. 2017, 16, 170–182.
- 13 J. Alam, L. A. Dass, M. Ghasemi, M. Alhoshan, Polym. Compos. 2013, 34 (11), 1870–1877.
- 14 H. Zarrabi, M. E. Yekavalangi, V. Vatanpour, A. Shockravi, M. Safarpour, Desalination 2016, 394, 83–90.
- 15 J. Huang, K. Zhang, K. Wang, Z. Xie, B. Ladewig, H. Wang, J. Membr. Sci. 2012, 423, 362–370.
- 16 H. Wu, B. Tang, P. Wu, J. Membr. Sci. 2013, 428, 425–433.
- 17 T.-H. Bae, T.-M. Tak, J. Membr. Sci. 2005, 266 (1–2), 1–5.
- 18 M. Fonouni, H. Etemadi, R. Yegani, S. Zarin, Desalin. Water Treat. 2017, 90, 99–109.
- 19 D. Emadzadeh, W. J. Lau, T. Matsuura, M. Rahbari-Sisakht, A. F. Ismail, Chem. Eng. J. 2014, 237, 70–80.
- 20 X. Cao, J. Ma, X. Shi, Z. Ren, Appl. Surf. Sci. 2006, 253 (4), 2003–2010.
- 21 R. Das, S. Sarkar, S. Chakraborty, H. Choi, C. Bhattacharjee, Ind. Eng. Chem. Res. 2014, 53 (8), 3012–3020.
- 22 S. Chakraborty, S. Loutatidou, G. Palmisano, J. Kujawa, M. O. Mavukkandy, S. Al-Gharabli, E. Curcio, H. A. Arafat, J. Environ. Chem. Eng. 2017, 5 (5), 5014–5024.
- 23 S. Sarkar, S. Chakraborty, C. Bhattacharjee, Ecotoxicol. Environ. Saf. 2015, 121, 263–270.
- 24 S. Sarkar, K. Sondhi, R. Das, S. Chakraborty, H. Choi, C. Bhattacharjee, Ecotoxicol. Environ. Saf. 2015, 121, 193–198.
- 25 H. Etemadi, R. Yegani, M. Seyfollahi, Sep. Purif. Technol. 2017, 177, 350–362.
- 26 H. Etemadi, R. Yegani, V. Babaeipour, J. Appl. Polym. Sci. 2017, 134 (21), 44873.
- 27 Y. H. Choi, H. S. Kim, J. H. Kweon, Sep. Purif. Technol. 2008, 62 (3), 529–534.
- 28 X. Chen, H. Deng, Desalination 2012, 300, 51–57.
- 29 M. Dong, B. Gao, W. Xu, Y. Wang, R. Mao, Desalination 2012, 294, 30–35.
- 30 A. Behboudi, Y. Jafarzadeh, R. Yegani, Chem. Eng. Res. Des. 2016, 114, 96–107.
- 31 G. Gesan-Guiziou, R. Wakeman, G. Daufin, Chem. Eng. J. 2002, 85 (1), 27–34.
- 32 P. Le-Clech, V. Chen, T. A. Fane, J. Membr. Sci. 2006, 284 (1–2), 17–53.
- 33 M. Amini, H. Etemadi, A. Akbarzadeh, R. Yegani, Biochem. Eng. J. 2017, 127, 196–205.
- 34 A. Razmjou, J. Mansouri, V. Chen, J. Membr. Sci. 2011, 378 (1–2), 73–84.
- 35 X. Shen, Y. Zhao, L. Chen, Chem. Eng. Technol. 2015, 38 (5), 859–866.
- 36 H. Etemadi, R. Yegani, M. Seyfollahi, V. Babaeipour, Desalin. Water Treat. 2017, 76, 98–111.
- 37 S. Heidari, M. Amirinejad, H. Jahangirian, Chem. Eng. Technol. 2019, 42 (6), 1310–1320.
- 38 N. Nor, J. Jaafar, A. Ismail, M. A. Mohamed, M. Rahman, M. Othman, W. Lau, N. Yusof, Desalination 2016, 391, 89–97.
- 39 J. Dasgupta, A. Singh, S. Kumar, J. Sikder, S. Chakraborty, S. Curcio, H. A. Arafat, J. Environ. Chem. Eng. 2016, 4 (2), 2008–2022.
- 40 S. Liang, Y. Kang, A. Tiraferri, E. P. Giannelis, X. Huang, M. Elimelech, ACS Appl. Mater. Interfaces 2013, 5 (14), 6694–6703.
- 41 M.-L. Luo, J.-Q. Zhao, W. Tang, C.-S. Pu, Appl. Surf. Sci. 2005, 249 (1–4), 76–84.
- 42 G. Zhang, S. Lu, L. Zhang, Q. Meng, C. Shen, J. Zhang, J. Membr. Sci. 2013, 436, 163–173.
- 43 E. Yuliwati, A. Ismail, T. Matsuura, M. Kassim, M. Abdullah, Desalination 2011, 283, 214–220.
- 44 V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, Sep. Purif. Technol. 2012, 90, 69–82.
- 45 Z. Xu, J. Zhang, M. Shan, Y. Li, B. Li, J. Niu, B. Zhou, X. Qian, J. Membr. Sci. 2014, 458, 1–13.
- 46 M. Zhang, R. W. Field, K. Zhang, J. Membr. Sci. 2014, 471, 274–284.
- 47 Y. Ma, F. Shi, Z. Wang, M. Wu, J. Ma, C. Gao, Desalination 2012, 286, 131–137.
- 48 L.-Y. Yu, Z.-L. Xu, H.-M. Shen, H. Yang, J. Membr. Sci. 2009, 337 (1–2), 257–265.
- 49 J. Hong, Y. He, Desalination 2014, 332 (1), 67–75.
- 50 Y. Yang, H. Zhang, P. Wang, Q. Zheng, J. Li, J. Membr. Sci. 2007, 288 (1–2), 231–238.
- 51 Q. Zhou, J.-h. Li, B.-f. Yan, D. Wu, Q.-q. Zhang, Chin. J. Polym. Sci. 2014, 32 (7), 892–905.
- 52 M.-l. Luo, W. Tang, J.-q. Zhao, C.-s. Pu, J. Mater. Process. Technol. 2006, 172 (3), 431–436.
- 53 H. Rabiee, M. H. D. A. Farahani, V. Vatanpour, J. Membr. Sci. 2014, 472, 185–193.
- 54 C.-Y. Liang, P. Uchytil, R. Petrychkovych, Y.-C. Lai, K. Friess, M. Sipek, M. M. Reddy, S.-Y. Suen, Sep. Purif. Technol. 2012, 92, 57–63.
- 55 Y. Yang, P. Wang, Q. Zheng, J. Polym. Sci., Part B: Polym. Phys. 2006, 44 (5), 879–887.
- 56 V. Vatanpour, S. S. Madaeni, R. Moradian, S. Zinadini, B. Astinchap, J. Membr. Sci. 2011, 375 (1–2), 284–294.
- 57 T. Wu, B. Zhou, T. Zhu, J. Shi, Z. Xu, C. Hu, J. Wang, RSC Adv. 2015, 5 (11), 7880–7889.
- 58 S. Chellam, W. Xu, J. Colloid Interface Sci. 2006, 301 (1), 248–257.
- 59 H. Etemadi, M. Fonouni, R. Yegani, Biotechnol. Rep. 2020, 25, e00414.
- 60 H. Etemadi, R. Yegani, Biofouling 2019, 35 (6), 618–630.
- 61 A. Cui, Z. Liu, C. Xiao, Y. Zhang, J. Membr. Sci. 2010, 360 (1–2), 259–264.
- 62 Y. Jafarzadeh, R. Yegani, Chem. Eng. Res. Des. 2015, 93, 684–695.