Product Design and Engineering in Chemical Engineering: Past, Present State, and Future
Corresponding Author
Jens Uhlemann
Bayer AG, Head of Environmental Science Formulation Technology, Crop Science Division, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
Correspondence: Jens Uhlemann ([email protected]), Bayer AG, Head of Environmental Science Formulation Technology, Crop Science Division, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany.Search for more papers by this authorRaquel Costa
University of Coimbra, CIEPQPF – Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal
Search for more papers by this authorJean-Claude Charpentier
Université de Lorraine, Laboratoire Réactions et Génie des Procédés, CNRS – ENSIC, 1, rue Grandville, 54000 Nancy, France
Search for more papers by this authorCorresponding Author
Jens Uhlemann
Bayer AG, Head of Environmental Science Formulation Technology, Crop Science Division, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany
Correspondence: Jens Uhlemann ([email protected]), Bayer AG, Head of Environmental Science Formulation Technology, Crop Science Division, Alfred-Nobel-Strasse 50, 40789 Monheim, Germany.Search for more papers by this authorRaquel Costa
University of Coimbra, CIEPQPF – Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Rua Silvio Lima, 3030-790 Coimbra, Portugal
Search for more papers by this authorJean-Claude Charpentier
Université de Lorraine, Laboratoire Réactions et Génie des Procédés, CNRS – ENSIC, 1, rue Grandville, 54000 Nancy, France
Search for more papers by this authorAbstract
Product design and engineering (PDE), originally heralded as a new paradigm of chemical engineering, aims to define new and/or improved products based on customer needs and/or new technologies. A comprehensive discussion of PDE as a building block for chemical engineering education, research, and practice is still lacking, preventing a broader impact on academic and industry realities more and more concerned with the “knowledge economy”. The purpose of the present paper was to contribute to the mitigation of this gap by presenting the results of the EFCE Section Group PDE survey based on PDE academia and industry expert and practitioner feedback as well as on a literature review. Status and challenges of PDE are discussed and academic and industry perspectives are mapped.
References
- 1 R. G. Cooper, Winning at New Products: Accelerating the Process from Idea to Launch, 2nd ed., Addison-Wesley Publishing Company, New York 1993.
- 2
Engineering Design: A Systematic Approach (Eds.: G. Pahl, W. Beitz), 2nd ed., Springer, London
1996.
10.1007/978-1-4471-3581-4 Google Scholar
- 3 The PDMA Handbook of New Product Development (Eds.: M. D. Rosenau, A. Griffin, G. A. Catellion, N. F. Anschuetz), John Wiley & Sons, New York 1996.
- 4 Product Design and Development (Eds.: K. T. Ulrich, S. D. Eppinger), 6th ed., McGraw-Hill, New York 2016.
- 5 J.-C. Charpentier, Chem. Eng. Sci. 1997, 52 (18), 3–4. DOI: https://doi.org/10.1016/S0009-2509(97)00209-1
- 6 R. Gani, K. M. Ng, Comput. Chem. Eng. 2015, 91, 70–79. DOI: https://doi.org/10.1016/j.compchemeng.2016.03.009
- 7
T. S. Kuhn, The Structure of Scientific Revolutions, 4th ed., University of Chicago Press, Chicago
2012.
10.7208/chicago/9780226458144.001.0001 Google Scholar
- 8 E. M. Rogers, Diffusion of Innovations, 5th ed., Free Press, New York 2003.
- 9 S. W. Churchill, Ind. Eng. Chem. Res. 2007, 46 (24), 7851–7869. DOI: https://doi.org/10.1021/ie070522o
- 10 W. W. Powell, K. Snellman, Annu. Rev. Soc. 2004, 30 (1), 199–220. DOI: https://doi.org/10.1146/annurev.soc.29.010202.100037
- 11 R. Costa, J. Uhlemann, U. Bröckel, S. Kaufmann, G. Moggridge, P. Saraiva, G. Wagner, J.-C. Charpentier, M. Kind, T. Stelzer, E. Tsotsas, 10th World Congr. of Chemical Engineering, Barcelona, October 2017.
- 12 J. Uhlemann, R. Costa, U. Bröckel, S. Kaufmann, G. Moggridge, P. Saraiva, G. Wagner, J.-C. Charpentier, M. Kind, T. Stelzer, E. Tsotsas, 10th World Congr. of Chemical Engineering, Barcelona, October 2017.
- 13 E. Hendriks, G. M. Kontogeorgis, R. Dohrn, J.-C. de Hemptinne, I. G. Economou, L. Fele Zilnik, V. Vesovic, Ind. Eng. Chem. Res. 2011, 49, 11131–11141. DOI: https://doi.org/10.1021/ie101231b
- 14 H. Rumpf, Staub – Reinhalt. Luft 1967, 27 (1), 3–13.
- 15 K. Borho, R. Polke, K. Wintermantel, H. Schubert, K. Sommer, Chem. Ing. Tech. 1993, 63 (8), 792. DOI: https://doi.org/10.1002/cite.330630805
- 16 J. Krekel, R. Polke, Chem. Ing. Tech. 1992, 64 (6), 528–535. DOI: https://doi.org/10.1002/cite.330640609
- 17 J. Villermaux, Chem. Eng. Sci. 1993, 48 (14), 2525–2535. DOI: https://doi.org/10.1016/0009-2509(93)80265-R
- 18 G. Agam, Industrial Chemicals: Their Characteristics and Development, Elsevier, Amsterdam 1994.
- 19 J. Villadsen, Chem. Eng. Sci. 1997, 52 (17), 2857. DOI: https://doi.org/10.1016/S0009-2509(97)00125-5
- 20 M. A. Meier, K. Hungerbuhler, P. Alean-Kirkpatrick, Chimia 1997, 51 (5), 171–175.
- 21 J.-C. Charpentier, P. Trambouze, Chem. Eng. Process. 1998, 37 (6), 559–565. DOI: https://doi.org/10.1016/S0255-2701(98)00062-2
- 22 J.-C. Charpentier, Actual. Chim. 1998, 6, 14–18.
- 23 M. Kind, Chem. Eng. Process. 1999, 38 (4–6), 405–410. DOI: https://doi.org/10.1016/S0255-2701(99)00038-0
- 24 K. Wintermantel, Chem. Eng. Sci. 1999, 54 (11), 1601–1620. DOI: https://doi.org/10.1016/S0009-2509(98)00412-6
- 25 K. Wintermantel, Chem. Eng. Res. Des. 1999, 77 (3), 175–188. DOI: https://doi.org/10.1205/026387699526089
- 26 H. Chase, Trans. Inst. Chem. Eng. 1999, 77 (C), 173. DOI: https://doi.org/10.1205/096030899532439
- 27 J. Seville, Chem. Eng. (Rugby, UK) 2000, 709, 18–19.
- 28 G. D. Moggridge, E. L. Cussler, Chem. Eng. Res. Des. 2000, 78 (1), 5–11. DOI: https://doi.org/10.1205/026387600527022
- 29 A. W. Westerberg, E. Subrahmanian, Comput. Chem. Eng. 2000, 24 (2–7), 959–966. DOI: https://doi.org/10.1016/S0098-1354(00)00400-2
- 30 J. A. Shaeiwitz, R. Turton, Chem. Eng. Educ. 2001, 35 (4), 280–285.
- 31 J. Seville, Powder Technol. 2001, 119 (1), 1. DOI: https://doi.org/10.1016/S0032-5910(01)00437-5
- 32 P. C. Knight, Powder Technol. 2001, 119 (1), 14–25. DOI: https://doi.org/10.1016/S0032-5910(01)00400-4
- 33 W. Peukert, L. Vogel, Chem. Eng. Technol. 2001, 24 (9), 945–950. DOI: https://doi.org/10.1002/1521-4125(200109)24:9<945::AID-CEAT945>3.0.CO;2-Y
- 34 J. E. Gillett, Chem. Eng. Technol. 2001, 24 (6), 561–570. DOI: https://doi.org/10.1002/1521-4125(200106)24:6<561::AID-CEAT561>3.0.CO;2-X
- 35 C. Wibowo, K. Ng, AIChE J. 2004, 47 (12), 2746–2767. DOI: https://doi.org/10.1002/aic.690471214
- 36 J. Wesselingh, Powder Technol. 2001, 119 (1), 2–8. DOI: https://doi.org/10.1016/S0032-5910(01)00398-9
- 37 J. Wei, Ind. Eng. Chem. Res. 2002, 41 (8), 1917–1919. DOI: https://doi.org/10.1021/ie0200398
- 38 C. Wibowo, K. M. Ng, AIChE J. 2002, 48 (6), 1212–1230. DOI: https://doi.org/10.1002/aic.690480609
- 39 W. Rähse, S. Hoffmann, Chem. Ing. Tech. 2002, 74 (9), 1220–1229. DOI: https://doi.org/10.1002/1522-2640(20020915)74:9<1220::AID-CITE1220>3.0.CO;2-Z
- 40 E. Favre, L. Marchal-Heusler, M. Kind, Chem. Eng. Res. Des. 2002, 80 (1), 65–74. DOI: https://doi.org/10.1205/026387602753393231
- 41 J.-C. Charpentier, Chem. Eng. Sci. 2002, 57 (22–23), 4667–4690. DOI: https://doi.org/10.1016/S0009-2509(02)00287-7
- 42 M. Kind, Chem. Eng. Sci. 2002, 57 (20), 4287–4293. DOI: https://doi.org/10.1016/S0009-2509(02)00345-7
- 43 H. J. Feise, Chem. Eng. Res. Des. 2002, 81 (8), 837–841. DOI: https://doi.org/10.1205/026387603322482077
- 44 E. L. Cussler, D. W. Savage, A. P. J. Middelberg, M. Kind, Chem. Eng. Prog. 2002, 98 (1), 26–31.
- 45 M. Molzahn, K. Wittstock, Chem. Eng. Technol. 2002, 25 (3), 231–235. DOI: https://doi.org/10.1002/1521-4125(200203)25:3<231::AID-CEAT231>3.0.CO;2-S
- 46 K. Y. Fung, K. M. Ng, AIChE J. 2004, 49 (5), 1193–1215. DOI: https://doi.org/10.1002/aic.690490512
- 47 W. Peukert, L. Vogel, Powder Technol. 2003, 129, 101–110. DOI: https://doi.org/10.1016/S0032-5910(02)00217-6
- 48 Kirk-Othmer Encyclopedia of Chemical Technology (Eds.: G. D. Moggridge, E. L. Cussler), John Wiley & Sons, New York 2003, 758–785.
- 49 J. Li, M. Kwauk, Chem. Eng. Sci. 2003, 58 (3–6), 521–535. DOI: https://doi.org/10.1016/S0009-2509(02)00577-8
- 50 J. A. Shaeiwitz, R. Turton, Int. J. Eng. Educ. 2003, 19 (1), 153–157.
- 51 E. L. Cussler, J. Wei, AIChE J. 2003, 49 (5), 1072–1075. DOI: https://doi.org/10.1002/aic.690490502
- 52 W. Peukert, H. J. Schmid, Chem. Ing. Tech. 2003, 75, 177–183. DOI: https://doi.org/10.1002/cite.200390035
- 53 W. Rähse, S. Hoffmann, Chem. Eng. Technol. 2003, 26 (9), 931–940. DOI: https://doi.org/10.1002/ceat.200306106
- 54 U. Teipel, Chem. Eng. Technol. 2004, 27 (7), 751–756. DOI: https://doi.org/10.1002/ceat.200400046
- 55 J. Tomas, Chem. Eng. Technol. 2004, 27 (6), 605–618. DOI: https://doi.org/10.1002/ceat.200406134
- 56 K. M. Ng, C. Wibowo, Korean J. Chem. Eng. 2003, 20 (5), 791–798. DOI: https://doi.org/10.1007/BF02697278
- 57 E. Favre, J. Bousquet, Actual. Chim. 2004, 276, 28–35.
- 58 M. Hill, AIChE J. 2004, 50 (8), 1656–1661. DOI: https://doi.org/10.1002/aic.10293
- 59 W. Rähse, Chem. Ing. Tech. 2004, 76 (18), 1051–1063. DOI: https://doi.org/10.1002/cite.200406176
- 60 W. Rähse, Chem. Ing. Tech. 2004, 76 (3), 220–231. DOI: https://doi.org/10.1002/cite.200406153
- 61 R. Gani, Comput. Chem. Eng. 2004, 28 (12), 2441–2457. DOI: https://doi.org/10.1016/j.compchemeng.2004.08.010
- 62 I. E. Grossmann, Comput. Chem. Eng. 2004, 15, 28–47. DOI: https://doi.org/10.1016/S1570-7946(03)80525-4
- 63 R. M. Voncken, A. A. Broekhuis, H. J. Heeres, G. H. Jonker, Chem. Eng. Res. Des. 2004, 82 (11), 1411–1424. DOI: https://doi.org/10.1205/cerd.82.11.1411.52030
- 64 A. P. Barbosa-Póvoa, H. Matos, ESCAPE-14, Elsevier, Amsterdam 2004. DOI: https://doi.org/10.1016/S1570-7946(04)80091-9
- 65 J. Abildskov, G. M. Kontogeorgis, Chem. Eng. Res. Des. 2004, 82 (11), 1505–1510. DOI: https://doi.org/10.1205/cerd.82.11.1505.52036
- 66 U. Teipel, Chem. Eng. Technol. 2004, 27 (7), 751–756. DOI: https://doi.org/10.1002/ceat.200400046
- 67 J. Tomas, Chem. Eng. Technol. 2004, 27 (6), 605–618. DOI: https://doi.org/10.1002/ceat.200406134
- 68 B. Harjo, C. Wibowo, K. M. Ng, Chem. Eng. Res. Des. 2004, 82 (8), 1010–1028. DOI: https://doi.org/10.1205/0263876041580695
- 69 K. M. Ng, Comput. Chem. Eng. 2003, 15, 63–73. DOI: https://doi.org/10.1016/S1570-7946(03)80527-8
- 70 M. R. Eden, S. B. Jorgensen, R. Gani, Chem. Eng. Process. 1998, 43 (5), 595–608. DOI: https://doi.org/10.1016/j.cep.2003.03.002
- 71 R. Gani, Chem. Eng. Res. Des. 2004, 82 (11), 1494–1504. DOI: https://doi.org/10.1205/cerd.82.11.1494.52032
- 72 J. Bertling, J. Blomer, R. Kummel, Chem. Eng. Technol. 2004, 27 (8), 829–837. DOI: https://doi.org/10.1002/ceat.200406138
- 73 U. Broeckel, C. Hahn, Chem. Eng. Res. Des. 2004, 82 (11), 1453–1457. DOI: https://doi.org/10.1205/cerd.82.11.1453.52039
- 74 T. Broekhuis, Chem. Eng. Res. Des. 2004, 82 (11), 1409–1410. DOI: https://doi.org/10.1205/cerd.82.11.1409.52029
- 75 J.-C. Charpentier, T. F. McKenna, Chem. Eng. Sci. 2004, 59 (8–9), 1617–1640. DOI: https://doi.org/10.1016/j.ces.2004.01.044
- 76 F. Stepanek, Chem. Eng. Res. Des. 2004, 82 (11), 1458–1466. DOI: https://doi.org/10.1205/cerd.82.11.1458.52035
- 77 A. Shaw, H. N. Yow, M. J. Pitt, A. D. Salman, I. Hayati, Chem. Eng. Res. Des. 2004, 82 (11), 1467–1473. DOI: https://doi.org/10.1205/cerd.82.11.1467.52027
- 78 H. Schubert, R. Engel, Chem. Eng. Res. Des. 2004, 82 (9), 1137–1143. DOI: https://doi.org/10.1205/cerd.82.9.1137.44154
- 79 J. Wei, Chem. Eng. Sci. 2004, 59 (8–9), 1641–1651. DOI: https://doi.org/10.1016/j.ces.2004.01.045
- 80 P. M. Saraiva, R. Costa, Chem. Eng. Res. Des. 2004, 82 (11), 1474–1484. DOI: https://doi.org/10.1205/cerd.82.11.1474.52024
- 81 J. A. Coutinho, T. Vilela, P. Pereira, P. Pessoa, M. M. Santos, G. M. Kontogeorgis, Chem. Eng. Res. Des. 2004, 83 (4), 352–356. DOI: https://doi.org/10.1205/cherd.03231
- 82 J.-C. Charpentier, Chem. Eng. J. 2005, 107, 3–17. DOI: https://doi.org/10.1016/j.cej.2004.12.004
- 83 E. Favre, L. Marchal-Heussler, A. Durand, N. Midoux, Chem. Eng. Educ. 2005, 39 (4), 264.
- 84 K. M. Ng, J. H. Li, M. Kwauk, AIChE J. 2005, 51 (10), 2620–2627. DOI: https://doi.org/10.1002/aic.10658
- 85 J. Bertrand, P. Mavros, Chem. Eng. Res. Des. 2005, 83 (1), 1–6. DOI: https://doi.org/10.1205/cherd.04131
- 86 M. A. Ansari, F. Stepanek, AIChE J. 2005, 52 (11), 3762–3774. DOI: https://doi.org/10.1002/aic.10990
- 87
L. Kavanagh, P. Lant, Educ. Chem. Eng.
2006, 1 (1), 66–71. DOI: https://doi.org/10.1205/ece.05001
10.1205/ece.05001 Google Scholar
- 88 I. Norton, P. Fryer, S. Moore, AIChE J. 2005, 52 (5), 1632–1640. DOI: https://doi.org/10.1002/aic.10815
- 89 M. F. Edwards, Chem. Eng. Res. Des. 2005, 84 (4), 255–260. DOI: https://doi.org/10.1205/cherd05030
- 90 M. J. Hounslow, G. K. Reynolds, AIChE J. 2005, 52 (7), 2507–2517. DOI: https://doi.org/10.1002/aic.10874
- 91 R. Costa, P. M. Saraiva, G. Moggridge, Chem. Eng. Prog. 2006, 102 (8), 10–18.
- 92 R. Costa, G. D. Moggridge, P. M. Saraiva, AIChE J. 2005, 52 (6), 1976–1986. DOI: https://doi.org/10.1002/aic.10880
- 93 W. Dzwinel, D. A. Yuen, K. Boryczko, Chem. Eng. Sci. 2006, 61, 2169.
- 94 F. P. Bernardo, R. Costa, P. M. Saraiva, G. D. Moggridge, Int. Conf. on Engineering Education ICEE, Coimbra, Portugal, September 2007.
- 95 J. C. Charpentier, Ind. Eng. Chem. Res. 2007, 46 (11), 3465–3485. DOI: https://doi.org/10.1021/ie061290g
- 96 M. J. Bagajewicz, AIChE J. 2007, 53 (12), 3155–3170. DOI: https://doi.org/10.1002/aic.11332
- 97 Chemical Product Design: Toward a Perspective through Case Studies (Eds.: K. M. Ng, R. Gani, K. Dam-Johansen), Computer-Aided Chemical Engineering, Vol. 23, Elsevier, Amsterdam 2007.
- 98 Product Design and Engineering – Best Practices (Eds.: U. Bröckel, W. Meier, G. Wagner), John Wiley & Sons, New York 2007.
- 99 Design and Development of Biological, Chemical, Food and Pharmaceutical Products (Eds.: J. A. Wesselingh, S. Kiil, M. E. Vigild), John Wiley & Sons, Chichester 2007.
- 100 W. Rähse, Chemisches Produktdesign, Springer, Berlin 2007.
- 101 J. Wei, Product Engineering: Molecular Structure and Properties, Oxford University Press, Princeton 2007.
- 102
E. Favre, V. Falk, C. Roizard, E. Schaer, Educ. Chem. Eng.
2008, 3 (1), 22–27. DOI: https://doi.org/10.1016/j.ece.2007.12.002
10.1016/j.ece.2007.12.002 Google Scholar
- 103 P. M. Murphy, J. Chem. Educ. 2007, 84 (1), 97. DOI: https://doi.org/10.1021/ed084p97
- 104 J.-C. Charpentier, Comput. Chem. Eng. 2009, 33 (5), 936–946. DOI: https://doi.org/10.1016/j.compchemeng.2008.11.007
- 105 M. Hill, Comput. Chem. Eng. 2009, 33 (5), 947–953. DOI: https://doi.org/10.1016/j.compchemeng.2008.11.013
- 106 W. D. Seider, S. Widagdo, J. D. Seader, D. R. Levin, Comput. Chem. Eng. 2009, 33 (5), 930–935. DOI: https://doi.org/10.1016/j.compchemeng.2008.10.019
- 107 W. Rähse, Chem. Ing. Tech. 2009, 81 (3), 225–240. DOI: https://doi.org/10.1002/cite.200800103
- 108 Y. S. Yuen, S. Chenga, K. W. Lama, K. M. Ng, R. K. M. Kob, C. Wibowo, Comput. Chem. Eng. 2009, 33 (5), 1097–1113. DOI: https://doi.org/10.1016/j.compchemeng.2008.10.010
- 109 B. V. Smith, M. Lerapepritou, Ind. Eng. Chem. Res. 2009, 48 (18), 8566–8574. DOI: https://doi.org/10.1021/ie900377ejjj
- 110 L. Arunprakash, T. Karunanithia, C. Acquah, L. E. K. Achenie, S. Sithambaram, S. L. Suib, Comput. Chem. Eng. 2009, 33 (5), 1014–1021. DOI: https://doi.org/10.1016/j.compchemeng.2008.11.003
- 111 M. Bagajewicz, A. Barbaro, AIChE J. 2004, 50 (5), 963–989 DOI: https://doi.org/10.1002/aic.10094
- 112 N. G. Chemmangattuvalappil, Comput. Chem. Eng. 2009, 33 (3), 636–643. DOI: https://doi.org/10.1016/j.compchemeng.2008.07.016
- 113
W. Rähse, Nachr. Chem.
2009, 57 (5), 534–536. DOI: https://doi.org/10.1002/nadc.200963611
10.1002/nadc.200963611 Google Scholar
- 114 R. Morales-Rodriguez, R. Gani, Comput.-Aided Chem. Eng. 2009, 26, 495–500.
- 115 M. Fermeglia, S. Pricl, Comput. Chem. Eng. 2009, 33, 1701.
- 116 E. Conte, R. Morales-Rodriguez, R. Gani, Comput.-Aided Chem. Eng. 2009, 26, 249–254.
- 117 T. Stelzer, J. Ulrich, Chem. Eng. Technol. 2010, 33 (5), 723–729. DOI: https://doi.org/10.1002/ceat.200900478
- 118 B. V. Smith, M. G. Ierapetritou, Comput. Chem. Eng. 2010, 34, 857–865.
- 119 J.-C. Charpentier, Chem. Eng. Res. Des. 2010, 88 (3), 248–254. DOI: https://doi.org/10.116/j.cherd.2009.03.008
- 120 E. L. Cussler, L. Wagner, L. Marchal-Heusser, AIChE J. 2010, 56 (2), 283–299.
- 121 B. V. Smith, M. G. Ierapetritou, Comput. Chem. Eng. 2011, 34 (6), 3919–3927. DOI: https://doi.org/10.1016/j.compchemeng.2010.02.039
- 122 E. Conte, R. Gani, K. M. Ng, AIChE J. 2011, 57 (9), 2431–2449. DOI: https://doi.org/10.1002/aic.12458
- 123 M. Bagajewicz, S. Hill, A. Robben, H. Lopez, M. Sanders, E. Sposato, AIChE J. 2011, 57 (1), 160–177. DOI: https://doi.org/10.1002/aic.12242
- 124
Chemical Product Design (Eds.: E. L. Cussler, G. D. Moggridge), Cambridge University Press, Cambridge
2011.
10.1017/CBO9781139035132 Google Scholar
- 125 Z. Jaworski, B. Zakrzewska, Comput. Chem. Eng. 2011, 35, 434–445.
- 126 E. Conte, R. Gani, T. I. Malik, Fluid Phase Equilib. 2011, 302, 294–304.
- 127 E. Conte, R. Gani, Y. S. Cheng, K. M. Ng, AIChE J. 2012, 58, 173–189.
- 128 F. Picchioni, A. A. Broekhuis, Curr. Opin. Chem. Eng. 2012, 1 (4), 459–464. DOI: https://doi.org/10.1016/j.coche.2012.08.002
- 129
V. P. Gurumoorthy, R. J. B. Smith, Educ. Chem. Eng.
2013, 8 (2), 41–44. DOI: https://doi.org/10.1016/j.ece.2013.02.004
10.1016/j.ece.2013.02.004 Google Scholar
- 130 W. D. Seider, S. Widagdo, Curr. Opin. Chem. Eng. 2012, 1 (4), 472–475. DOI: https://doi.org/10.1016/j.coche.2012.08.003
- 131 B. Buesser, A. Gröhn, Chem. Eng. Technol. 2012, 35, 1133–1143.
- 132 X. D. Guo, L. J. Zhang, Y. Qian, Ind. Eng. Chem. Res. 2012, 51, 4719–4730.
- 133
J. C. Charpentier, C. Barrère-Tricca, Oil Gas Sci. Technol.
2013, 68, 965–976. DOI: https://doi.org/10.2516/ogst/2013180
10.2516/ogst/2013180 Google Scholar
- 134 Kirk-Othmer Encyclopedia of Chemical Technology (Eds.: R. Costa, R. Gabriel, P. M. Saraiva, E. L. Cussler, G. D. Moggridge), , 6th ed., John Wiley & Sons, New York 2014, 1–35.
- 135 K. Y. E. Yang, S.-M. Cheah, 10th Int. CDIO Conf., Barcelona, June 2014.
- 136 J. Li, Z. Luo, Ind. Eng. Chem. Res. 2014, 53 (5), 1900–1908. DOI: https://doi.org/10.1021/ie403753x
- 137 C. K. Lee, K. L. Choy, Y. N. Chan, Comput. Chem. Eng. 2014, 65 (4), 40–53. DOI: https://doi.org/10.1016/j.compchemeng.2014.03.004
- 138 N. Pandya, V. Gerbaud, J. Belaud, M. Teles Dos Santos, Comput. Chem. Eng. 2014, 71 (4), 362–376. DOI: https://doi.org/10.1016/j.compchemeng.2014.09.009
- 139 M. Mattei, G. Kontogeorgis, R. Gani, Fluid Phase Equilib. 2014, 362, 288–299. https://doi.org/10.1016/j.fluid.2013.10.030
- 140 E. Tsotsas, Drying Technol. 2015, 33 (15–16), 1859–1871. DOI: https://doi.org/10.1080/07373937.2015.1047954
- 141 F. P. Bernardo, P. M. Saraiva, AIChE J. 2014, 61 (3), 802–815. DOI: https://doi.org/10.1002/aic.14681
- 142 K. Y. Fung, K. M. Ng, L. Zhang, R. Gani, Comput. Chem. Eng. 2014, 91, 15–27. DOI: https://doi.org/10.1016/j.compchemeng.2016.03.009
- 143 S. Jonuzaj, P. T. Akula, P. M. Kleniati, C. S. Adjiman, AIChE J. 2016, 62, 1616–1633.
- 144 A. Rodrigues, E. L. Cussler, Educ. Chem. Eng. 2016, 14, 43–48.
- 145 L. Y. Ng, N. G. Chemmangattuvalappil, V. A. Dev, M. R. Eden, Comput.-Aided Chem. Eng. 2017, 39, 3–43.
- 146 L. Zhang, K. Y. Fung, C. Wibowo, R. Gani, Rev. Chem. Eng. 2017, 34 (3), 319–340. DOI: https://doi.org/10.1515/revce-2016-0067
- 147 S. Kalakul, S. Cignitti, L. Zhang, R. Gani, Comput.-Aided Chem. Eng. 2017, 39, 61–94.
- 148 H. A. Choudury, S. Intikhab, S. Kalakul, R. Gani, N. O. Elbashir, J. Nat. Gas Sci. Eng. 2017, 55, 585–594. DOI: https://doi.org/10.1016/j.jngse.2017.07.025
- 149
S. Kalakul, M. R. Eden, R. Gani, Comput.-Aided Chem. Eng.
2017, 40, 979–984.
10.1016/B978-0-444-63965-3.50165-3 Google Scholar
- 150 S. Kalakul, L. Zhang, Z. Fang, H. A. Choudury, S. Intikhab, N. Elbashir, M. R. Eden, R. Gani, Comput. Chem. Eng. 2018, 116, 37–55.
- 151 M. Karimi, D. Marchisio, E. Laurini, M. Fermeglia, S. Pricl, Chem. Eng. Sci. 2018, 178, 39–47.
- 152 F. Salcedo Galána, H. Mauricio Buitrago, M. A. T. Jiménez, H. L. L. Sierra Peñuelab, A. F. González Barriosa, Educ. Chem. Eng. 2018, 25 (10), 9–15. DOI: https://doi.org/10.1016/j.ece.2018.09.001
- 153 E. Conte, R. Morales-Rodriguez, R. Gani, Comput.-Aided Chem. Eng. 2009, 26, 249–254.
- 154 K. Y. Fung, K. M. Ng, Educ. Chem. Eng. 2018, 24 (7), 13–26. DOI: https://doi.org/10.1016/j.ece.2018.06.001
- 155 The Structure of Materials (Eds.: S. M. Allen, E. L. Thomas), Wiley, Chichester 1999.
- 156 M. A. White, Properties of Materials, Oxford University Press, Oxford 1999.
- 157 The Science and Design of Engineering Materials (Eds.: J. P. Schaffer, A. Saxena, S. D. Antolovich, T. W. Sanders, S. Warner), 2nd ed., McGraw Hill, New York 1999.
- 158 R. W. Chan, The Coming of Materials Science, Pergamon Press, Oxford 2001.
- 159
R. J. Naumann, Introduction to the Physics and Chemistry of Materials, CRC Press, Boca Raton, FL
2008.
10.1201/9781420061345 Google Scholar
- 160 J. A. Elliott, Int. Mater. Rev. 2011, 56 (4), 207–225. DOI: https://doi.org/10.1179/1743280410Y.0000000002
- 161 Developing Solid Oral Dosage Forms: Pharmaceutical Theory and Practice (Eds.: Y. Qiu, Y. Chen, G. G. Zhang), Academic Press, Cambridge, MA 2016.
- 162 Chemical Reactors: From Design to Operation (Eds.: P. Trambouze, J. P. Euzen), Editions Technip, Paris 2004.
- 163
Food Product Design – An Integrated Approach (Eds.: A. R. Linnemann, C. G. Schroën, M. A. van Boekel), Wageningen University Press, Wageningen
2011.
10.3920/978-90-8686-173-6 Google Scholar
- 164 J. Lerou, K. M. Ng, Chem. Eng. Sci. 1996, 51, 1595–1614.
- 165 C. Dan, A. Wachs, Int. J. Heat Fluid Flow 2010, 31, 1050–1057.
- 166 U. Piomelli, Large-Eddy Simulation: Present State and Future Perspective, AIAA 1998, Paper 98–0534.
- 167 C. W. Hirt, B. D. Nichols, J. Comput. Phys. 1981, 39, 201–225.
- 168 Y. D. Haroun, D. L. Legendre, L. Raynal, Chem. Eng. Sci. 2010, 65, 2896–2909.
- 169 G. Besagni, F. Inzoli, T. Ziegenhein, Chem. Eng. 2018, 2, 13.
- 170 D. Ramkrishna, M. R. Sing, Annu. Rev. Chem. Biomol. Eng. 2014, 5, 123–146.
- 171 M. Sen, R. Singh, A. Vanarase, J. John, R. Ramachandran, Chem. Eng. Sci. 2012, 80, 349–360.
- 172 M. Sen, D. Barrasso, R. Singh, R. Ramachandran, Processes 2014, 2, 89–111.
- 173 J. J. J. Gillissen, S. Sundaresan, H. E. A. Van den Akker, J. Fluid Mech. 2011, 679, 101–121.
- 174 Q. Li, K. H. Luo, Q. J. Kang, Y. L. He, Q. Chen, Q. Liu, Prog. Energy Combust. Sci. 2016, 52, 62–105.
- 175 A. Zarghami, S. Kenjeres, C. Haringa, H. E. A. Van den Akker, 9th Int. Conf. on Multiphase Flow, Firenze, May 2016.
- 176 P. Y. Prodhomme, P. Raybaud, H. Toulhouat, J. Catal. 2011, 280, 178–195.
- 177 M. A. Waller, S. E. Fawcett, J. Bus. Logist. 2013, 34, 77–84.
- 178 R. Uglietti, M. Bracconi, M. Maestri, React. Chem. Eng. 2018, 3, 527–539.
- 179 J. Lang, F. Stenger, H. Richert, Evonik Elements 2011, 37, 12–17.
- 180 T. Bieringer, S. Buchholz, N. Kockmann, Chem. Eng. Technol. 2013, 36, 900–910.
- 181 Y. Kim, L. K. Park, S. Yiacoumi, C. Tsouris, Annu. Rev. Chem. Biomol. Eng. 2017, 8, 359–380.
- 182 M. Baldea, T. F. Edgar, B. L. Stanley, A. A. Kiss, AIChE J. 2017, 63, 4262–4272.
- 183F3 (Flexible, Fast, Future) Factory 2013.
- 184 D. Schmalz, F. Stenger, A. Brodhagen, A. Schweiger, T. Bieringer, C. Dreiser, Dechema Praxisforum Future Production Concepts in Chemical Industry, Frankfurt, April 2016.
- 185U.S. Department of Energy Taps AIChE to Lead RAPID Modular Process Intensification Institute, News Release, AIChE, New York 2016. http://www.aiche.orga/about/press/releases/12-20-2016/us-department-energy-taps-aiche-lead-rapid-modular-process-intensification-institute
- 186 J. C. Charpentier, Tech. Ing. 2016, J7000, 1–6.
- 187 A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, M. C. Breamore, Anal. Chem. 2014, 86, 3124–3130.
- 188 A. J. Capel, S. Edmonson, S. D. R. Christies, R. D. Goodrige, R. J. Bibb, M. Thurstans, Lab Chip 2013, 13, 4583–4590.
- 189 M. D. Symes, P. J. Kitson, J. Yan, C. J. Richmond, G. J. Cooper, Nat. Chem. 2012, 4, 349–354.
- 190 C. Parra-Cabrera, C. Achille, S. Khun, R. Ameloot, Chem. Soc. Rev. 2018, 47, 209–230.
- 191 R. Faure, M. Flin, P. del Gallo, M. Wagner, Chem. Eng. 2018, 928.
- 192
V. Santos-Moreau, J. M. Newsam, J. C. Charpentier, Oil Gas Sci. Technol.
2015, 70, 395–403.
10.2516/ogst/2015006 Google Scholar
- 193 S. Rebouillat, B. Noirhomme, J. Biomater. Nanobiotechnol. 2018, 9, 189–209. DOI: https://doi.org/10.4236/jbnb.201892011