Acid Hydrolysis of Chitosan to Oligomers Using Hydrochloric Acid
Nawzat D. Aljbour
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorCorresponding Author
Mohammad D. H. Beg
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Correspondence: Mohammad D. H. Beg ([email protected]), Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia.Search for more papers by this authorJolius Gimbun
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorNawzat D. Aljbour
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorCorresponding Author
Mohammad D. H. Beg
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Correspondence: Mohammad D. H. Beg ([email protected]), Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang, Gambang 26300, Kuantan, Malaysia.Search for more papers by this authorJolius Gimbun
Universiti Malaysia Pahang, Center of Excellence for Advanced Research in Fluid Flow (CARIFF), Faculty of Chemical and Natural Resources Engineering, 26300 Gambang, Kuantan, Malaysia
Search for more papers by this authorAbstract
The natural polymer chitosan is widely used for medical and drug delivery applications. Low molecular weight chitosan (LMWC) has superior properties compared to high molecular weight chitosan (HMWC), which open new applications of LMWC, especially in the cosmetics, food, and pharmaceutical industries. LMWC is often produced from HMWC by acid, enzymatic, or oxidative hydrolysis. Industrially, hydrolysis with dilute HCl is preferred, since it is simple, practical, and gives a high yield. In this study 2M HCl was used to prepare LMWC. A high average depolymerization yield of 87% was obtained. The LMWCs were characterized by FTIR spectroscopy, and the molecular weight and degree of deacetylation were determined. The prepared LMWCs are fully deacetylated, and their production by this method is reproducible.
References
- 1 M. Rinaudo, Polym. Int. 2008, 57 (3), 397–430. DOI: https://doi.org/10.1002/pi.2378
- 2 N. A. Qinna, Q. G. Karwi, N. D. Al-Jbour, M. A. Al-Remawi, T. M. Alhussainy, Kh. A. Al-So'ud, M. M. H. Al Omari, A. A. Badwan, Mar. Drugs 2015, 13, 1710–1725. DOI: https://doi.org/10.3390/md13041710
- 3 B. K. Park, M. M. Kim, Int. J. Mol. Sci. 2010, 11 (12), 5152–5164. DOI: https://doi.org/10.3390/ijms11125152.
- 4 C. O. Mohan, C. N. Ravishankar, K. V. Lalitha, T. K. Srinivasa Gopal, Food Hydrocolloids 2012, 26 (1), 167–174. DOI: https://doi.org/10.1016/j.foodhyd.2011.05.005.
- 5 A. Qandil, A. Obaidat, M. Ali, B. Al-Taani, B. Tashtoush, N. Al-Jbour, M. Al Remawi, K. Al-Sou'od, A. Badwan, J. Solution Chem. 2009, 38, 695–712. DOI: https://doi.org/10.1007/s10953-009-9405-4
- 6 N. A. Athamneh, B. M. Tashtoush, A. M. Qandil, B. M. Al-Tanni, A. A. Obaidat, N. D. Al-Jbour, N. A. Qinna, K. Al-Sou'od, M. M. Al-Remawi, A. A. Badwan, Drug Dev. Ind. Pharm. 2013, 39 (8), 1217–1229. DOI: https://doi.org/10.3109/03639045.2012.707205
- 7 B. B. Aam, E. B. Heggset, A. L. Norberg, M. Sørlie, K. M. Vårum, V. G. H. Eijsink, Mar. Drugs 2010, 8 (5), 1482–1517. DOI: https://doi.org/10.3390/md8051482
- 8 H. Quan, F. Zhu, X. Han, Z. Xu, Y. Zhao, Z. Miao, Med. Hypotheses 2009, 73(2), 205–6. DOI: https://doi.org/10.1016/j.mehy.2009.02.018
- 9 R. Pangestuti, S. K. Kim, Mar. Drugs 2010, 8 (7), 2117–2128. DOI: https://doi.org/10.3390/md8072117
- 10 J. C. Fernandes, F. K. Tavaria, J. C. Soares, O. S. Ramos, M. João Monteiro, M. E. Pintado, M. F. Xavier, Food Microbiol. 2008, 25 (7), 922–928. DOI: https://doi.org/10.1016/j.fm.2008.05.003
- 11 Y. Wang, P. Zhou, J. Yu, X. Pan, P. Wang, W. Lan, S. Tao, Asia Pac. J. Clin. Nutr. 2007, 16 (Suppl. 1), 174–177.
- 12 E. J. Yang, J. G. Kim, Ji. Y. Kim, S. C. Kim, Cent. Eur. J. Biol. 2010, 5 (1), 95–102. DOI: https://doi.org/10.2478/s11535-009-0066-5
- 13 J. C. Fernandes, P. Eaton, H. Nascimento, M. S. Gião, O. S. Ramos, L. Belo, A. S. Silva, M. E. Pintado, F. X. Malcata, Carbohydr. Polym. 2010, 79, 1101–1106. DOI: https://doi.org/10.1016/j.carbpol.2009.10.050
- 14
S. K. Kim, Chitin, Chitosan, Oligosaccharides and Their Derivatives: Biological Activities and Applications, 2nd Ed.; CRC Press, New York
2010.
10.1201/EBK1439816035 Google Scholar
- 15 R. A. Krishnan, P. Deshmukh, S. Agarwal, P. Purohit, D. Dhoble, P. Waske, D. Khandekar, R. Jain, P. Dandekar, Carbohydr. Polym. 2016, 151, 417–425. DOI: https://doi.org/10.1016/j.carbpol.2016.05.082
- 16 P. Manivasagan, J. Oh, Int. J. Biol. Macromol. 2016, 82, 315–327. DOI: https://doi.org/10.1016/j.ijbiomac.2015.10.081.
- 17 L. A. Castillo, S. Farenzena, E. Pintos, M. S. Rodríguez, M. A. Villar, M. A. García, O. V. López, Food Packag. Shelf Life 2017, 14, 128–136. DOI: https://doi.org/10.1016/j.fpsl.2017.10.004
- 18 Y. Feng, G. Kopplin, K. Sato, K. I. Draget, K. M. Vårum, Carbohydr Polym. 2017, 156, 490–497. DOI: https://doi.org/10.1016/j.carbpol.2016.09.006
- 19 S. N. Hamer, B. M. Moerschbacher, S. Kolkenbrock, Carbohydr Res. 2014, 392, 16–20. DOI: https://doi.org/10.1016/j.carres.2014.04.006
- 20 R. H. Chen, J. R. Chang, J. S. Shyur, Carbohydr. Res. 1997, 299 (4), 287–294. DOI: https://doi.org/10.1016/S0008-6215(97)00019-0.
- 21 Y. J. Jeon, S. K. Kim, Carbohydr. Polym. 2000, 41 (2), 133–141. DOI: https://doi.org/10.1016/S0144-8617(99)00084-3
- 22 P. Sudha, T. Gomathi, S. Aisverya, in Green Polymers and Environmental Pollution Control, CRC Press, Boca Raton, FL 2016, Ch. 10.
- 23 Q. P. Peniston, E. L. Johnson, US Patent , 1975. 3 922 260
- 24 H. Omura, K. Uehara, Y. Tanaka, Japanese Patent (Jpn Kokai Tokyo Koho) , 1991. 03-02203
- 25 S. K. Kim, N. Rajapakse, Carbohydr. Polym. 2005, 62 (4), 357–368. DOI: https://doi.org/10.1016/j.carbpol.2005.08.012
- 26 J. C. Cabrera, P. V. Cutsem, Biochem Eng J. 2005, 25(2), 165–172. DOI: https://doi.org/10.1016/j.bej.2005.04.025
- 27 M. Y. Lee, F. Var, Y. Shin-ya, T. Kajiuchi, J. W. Yang, Process Biochem. 1999, 34 (5), 493–500. DOI: https://doi.org/10.1016/S0032-9592(98)00116-2
- 28 C. K. S. Pillai, W. Paul, C. P. Sharma, Prog. Polym. Sci. 2009, 34 (7), 641–678. DOI: https://doi.org/10.1016/j.progpolymsci.2009.04.001
- 29 R. Chen, J. Chang, J. Shyur, Carbohydr. Res. 1997, 299, 287–294. DOI: https://doi.org/10.1016/S0008-6215(97)00019-0
- 30 A. Elsayed, M. A. Remawi, N. Qinna, A. Farouk, A. Badwan, Eur. J. Pharm. Biopharm. 2009, 73 (2), 269–279. DOI: https://doi.org/10.1016/j.ejpb.2009.06.004
- 31British Pharmacopoeia 2015, Stationery Office, London 2014.
- 32 M. R. Kasaai, Carbohydr. Polym. 2008, 71 (4), 497–508. DOI: https://doi.org/10.1016/j.carbpol.2007.07.009