Recent Developments and Applications of Ionic Liquids in Gas Separation Membranes
Muhammad Zia ul Mustafa
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hilmi bin Mukhtar
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Correspondence: Hilmi bin Mukhtar ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorNik Abdul Hadi Md Nordin
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorHafiz Abdul Mannan
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorRizwan Nasir
University of Jeddah, Department of Chemical Engineering, Jeddah, Saudi Arabia
Search for more papers by this authorNabilah Fazil
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorMuhammad Zia ul Mustafa
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorCorresponding Author
Hilmi bin Mukhtar
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Correspondence: Hilmi bin Mukhtar ([email protected]), Universiti Teknologi PETRONAS, Chemical Engineering Department, Bandar Seri Iskandar, 32610 Perak, Malaysia.Search for more papers by this authorNik Abdul Hadi Md Nordin
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorHafiz Abdul Mannan
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorRizwan Nasir
University of Jeddah, Department of Chemical Engineering, Jeddah, Saudi Arabia
Search for more papers by this authorNabilah Fazil
Universiti Teknologi PETRONAS, Chemical Engineering Department, 32610 Bandar Seri Iskandar, Perak, Malaysia
Search for more papers by this authorAbstract
Flue gas emissions and the harmful effects of these gases urge to separate and capture these unwanted gases. Ionic liquids due to negligible vapor pressure, thermal stability, and wide electrochemical stability have expanded its application in gas separations. A comprehensive overview of the recent developments and applications of ionic liquid membranes (ILMs) for gas separation is given. The three general classifications of ILMs, such as supported ionic liquid membranes (SILMs), ionic liquid polymeric membranes (ILPMs), and ionic liquid mixed-matrix membranes (ILMMMs) along with their applications, for the separation of various mixed gases systems is discussed in detail. Furthermore, issues, challenges, computational study, and future perspectives for ILMs are also considered.
References
- 1 J. D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R. D. Srivastava, Int. J. Greenhouse Gas Control 2008, 2 (1), 9–20.
- 2 G. Pipitone, O. Bolland, Int. J. Greenhouse Gas Control 2009, 3 (5), 528–534.
- 3 J. L. Anderson, J. K. Dixon, E. J. Maginn, J. F. Brennecke, J. Phys. Chem. B 2006, 110 (31), 15059–15062. DOI: https://doi.org/10.1021/jp063547u
- 4 J. Erisman, A. Bleeker, J. Galloway, M. Sutton, Environ. Pollut. 2007, 150 (1), 140–149. DOI: https://doi.org/10.1016/j.envpol.2007.06.033
- 5 I. Statistics, CO2 Emissions from Fuel Combustion – Highlights, International Energy Agency (IEA), Paris 2011.
- 6 Z. Dai, R. D. Noble, D. L. Gin, X. Zhang, L. Deng, J. Membr. Sci. 2016, 497, 1–20. DOI: https://doi.org/10.1016/j.memsci.2015.08.060
- 7 T.-S. Chung, L. Y. Jiang, Y. Li, S. Kulprathipanja, Prog. Polym. Sci. 2007, 32 (4), 483–507. DOI: https://doi.org/10.1016/j.progpolymsci.2007.01.008
- 8 H. Li, L. Tuo, K. Yang, H.-K. Jeong, Y. Dai, G. He, W. Zhao, J. Membr. Sci. 2016, 511, 130–142. DOI: https://doi.org/10.1016/j.memsci.2016.03.050
- 9 H. Vinh-Thang, S. Kaliaguine, Chem. Rev. 2013, 113 (7), 4980–5028. DOI: https://doi.org/10.1021/cr3003888
- 10 A. C. Balazs, T. Emrick, T. P. Russell, Science 2006, 314 (5802), 1107–1110. DOI: https://doi.org/10.1126/science.1130557
- 11 J. E. Bara, T. K. Carlisle, C. J. Gabriel, D. Camper, A. Finotello, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2009, 48 (6), 2739–2751. DOI: https://doi.org/10.1021/ie8016237
- 12 Y. Ban, Z. Li, Y. Li, Y. Peng, H. Jin, W. Jiao, A. Guo, P. Wang, Q. Yang, C. Zhong, Angew. Chem. Int. Ed. 2015, 54 (51), 15483–15487. DOI: https://doi.org/10.1002/anie.201505508
- 13 L. A. Blanchard, Z. Gu, J. F. Brennecke, J. Phys. Chem. B 2001, 105 (12), 2437–2444. DOI: https://doi.org/10.1021/jp003309d
- 14 Z. Lei, B. Chen, Y.-M. Koo, D. R. MacFarlane, Chem. Rev. 2017, 117 (10), 6633–6635. DOI: https://doi.org/10.1021/acs.chemrev.7b00246
- 15 K. N. Ruckart, R. A. O'Brien, S. M. Woodard, K. N. West, T. G. Glover, J. Phys. Chem. C 2015, 119 (35), 20681–20697. DOI: https://doi.org/10.1021/acs.jpcc.5b04646
- 16 W. Qian, J. Texter, F. Yan, Chem. Soc. Rev. 2017, 46 (4), 1124–1159. DOI: https://doi.org/10.1039/C6CS00620E
- 17 R. D. Noble, D. L. Gin, J. Membr. Sci. 2011, 369 (1), 1–4. DOI: https://doi.org/10.1016/j.memsci.2010.11.075
- 18 Z. Zhang, J. Song, B. Han, Chem. Rev. 2016, 117 (10), 6834–6880. DOI: https://doi.org/10.1021/acs.chemrev.6b00457
- 19 C. Dai, J. Zhang, C. Huang, Z. Lei, Chem. Rev. 2017, 117 (19), 6929–6983. DOI: https://doi.org/10.1021/acs.chemrev.7b00030
- 20 S. N. P. Ventura, F. A. e Silva, M. V. Quental, D. Mondal, M. G. Freire, J. O. A. Coutinho, Chem. Rev. 2017, 117 (10), 6984–7052. DOI: https://doi.org/10.1021/acs.chemrev.6b00550
- 21 J. Grünauer, V. Filiz, S. Shishatskiy, C. Abetz, V. Abetz, J. Membr. Sci. 2016, 518, 178–191. DOI: https://doi.org/10.1016/j.memsci.2016.07.005
- 22 H. A. Mannan, H. Mukhtar, M. S. Shahrun, M. A. Bustam, Z. Man, M. Z. A. Bakar, Procedia Eng. 2016, 148, 25–29. DOI: https://doi.org/10.1016/j.proeng.2016.06.477
- 23 Z. Lei, C. Dai, B. Chen, Chem. Rev. 2014, 114 (2), 1289–1326. DOI: https://doi.org/10.1021/cr300497a
- 24 B. Sasikumar, G. Arthanareeswaran, A. Ismail, J. Mol. Liq. 2018, 266, 330–341. DOI: https://doi.org/10.1016/j.molliq.2018.06.081
- 25 E. D. Bates, R. D. Mayton, I. Ntai, J. H. Davis, J. Am. Chem. Soc. 2002, 124 (6), 926–927. DOI: https://doi.org/10.1021/ja017593d
- 26 D. Camper, J. E. Bara, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2008, 47 (21), 8496–8498. DOI: https://doi.org/10.1021/ie801002m
- 27 J. E. Bara, C. J. Gabriel, S. Lessmann, T. K. Carlisle, A. Finotello, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2007, 46 (16), 5380–5386. DOI: https://doi.org/10.1021/ie070437g
- 28 D. Camper, J. Bara, C. Koval, R. Noble, Ind. Eng. Chem. Res. 2006, 45 (18), 6279–6283. DOI: https://doi.org/10.1021/ie060177n
- 29 H. Ohno, M. Yoshizawa, W. Ogihara, Electrochim. Acta 2004, 50 (2), 255–261. DOI: https://doi.org/10.1016/j.electacta.2004.01.091
- 30 J. Tang, W. Sun, H. Tang, M. Radosz, Y. Shen, Macromolecules 2005, 38 (6), 2037–2039. DOI: https://doi.org/10.1021/ma047574z
- 31 J. E. Bara, S. Lessmann, C. J. Gabriel, E. S. Hatakeyama, R. D. Noble, D. L. Gin, Ind. Eng. Chem. Res. 2007, 46 (16), 5397–5404. DOI: https://doi.org/10.1021/ie0704492
- 32 A. G. Fadeev, M. M. Meagher, Chem. Commun. 2001, 3, 295–296. DOI: https://doi.org/10.1039/B006102F
- 33 P. Izák, K. Schwarz, W. Ruth, H. Bahl, U. Kragl, Appl. Microbiol. Biotechnol. 2008, 78 (4), 597–602. DOI: https://doi.org/10.1007/s00253-008-1354-0
- 34 P. Scovazzo, J. Membr. Sci. 2009, 343 (1–2), 199–211. DOI: https://doi.org/10.1016/j.memsci.2009.07.028
- 35 D. Han, K. H. Row, Molecules 2010, 15 (4), 2405–2426. DOI: https://doi.org/10.3390/molecules15042405
- 36 J. E. Bara, C. J. Gabriel, T. K. Carlisle, D. E. Camper, A. Finotello, D. L. Gin, R. D. Noble, Chem. Eng. J. 2009, 147 (1), 43–50. DOI: https://doi.org/10.1016/j.cej.2008.11.021
- 37 R. Condemarin, P. Scovazzo, Chem. Eng. J. 2009, 147 (1), 51–57. DOI: https://doi.org/10.1016/j.cej.2008.11.015
- 38 R. Spillman, M. Sherwin, Chem. Tech. 1990, 20 (6), 378–384.
- 39 J. E. Bara, D. E. Camper, D. L. Gin, R. D. Noble, Acc. Chem. Res. 2009, 43 (1), 152–159. DOI: https://doi.org/10.1021/ar9001747
- 40 R. W. Baker, K. Lokhandwala, Ind. Eng. Chem. Res. 2008, 47 (7), 2109–2121. DOI: https://doi.org/10.1021/ie071083w
- 41 J. J. Close, K. Farmer, S. S. Moganty, R. E. Baltus, J. Membr. Sci. 2012, 390, 201–210. DOI: https://doi.org/10.1016/j.memsci.2011.11.037
- 42 A. H. Jalili, M. Rahmati-Rostami, C. Ghotbi, M. Hosseini-Jenab, A. N. Ahmadi, J. Chem. Eng. Data 2009, 54 (6), 1844–1849. DOI: https://doi.org/10.1021/je8009495
- 43 H. Zhao, S. Xia, P. Ma, J. Chem. Technol. Biotechnol. 2005, 80 (10), 1089–1096. DOI: https://doi.org/10.1002/jctb.1333
- 44 D. Parmentier, S. Paradis, S. J. Metz, S. K. Wiedmer, M. C. Kroon, Chem. Eng. Res. Des. 2016, 109, 553–560. DOI: https://doi.org/10.1016/j.cherd.2016.02.034
- 45
J. Wang, J. Luo, S. Feng, H. Li, Y. Wan, X. Zhang, Green Energy Environ.
2016, 1 (1), 43–61. DOI: https://doi.org/10.1016/j.gee.2016.05.002
10.1016/j.gee.2016.05.002 Google Scholar
- 46 Membrane Engineering for the Treatment of Gases, Gas-Separation Problems with Membranes (Eds: E. Drioli, G. Barbieri), Vol. 1, The Royal Society of Chemistry, London 2011.
- 47 H. Ohya, V. Kudryavtsev, S. Semenova, in Polyimide Membranes –Application, Fabrications, and Properties, CRC Press, Boca Raton, FL 1996, 1–8.
- 48 A. Houde, B. Krishnakumar, S. Charati, S. Stern, J. Appl. Polym. Sci. 1996, 62 (13), 2181–2192. DOI: https://doi.org/10.1002/(SICI)1097-4628(19961226)62:13<2181::AID-APP1>3.0.CO;2-F
- 49 C. Cao, R. Wang, T. S. Chung, Y. Liu, J. Membr. Sci. 2002, 209 (1), 309–319. DOI: https://doi.org/10.1016/S0376-7388(02)00359-9
- 50 M. Coleman, W. Koros, J. Polym. Sci., Part B: Polym. Phys. 1994, 32 (11), 1915–1926. DOI: https://doi.org/10.1002/polb.1994.090321109
- 51 W. Koros, G. Fleming, J. Membr. Sci. 1993, 83 (1), 1–80. DOI: https://doi.org/10.1016/0376-7388(93)80013-N
- 52 S. Hess, C. Staudt, Desalination 2007, 217 (1), 8–16. DOI: https://doi.org/10.1016/j.desal.2007.01.011
- 53 H. A. Mannan et al., Appl. Mech. Mater. 2014, 625, 172–175. DOI: https://doi.org/10.4028/www.scientific.net/AMM.625.172
- 54
H. A. Mannan et al., Appl. Mech. Mater.
2015, 699, 325–330. DOI: https://doi.org/10.4028/www.scientific.net/AMM.699.325
10.4028/www.scientific.net/AMM.699.325 Google Scholar
- 55 L. Wang, Y. Cao, M. Zhou, S. J. Zhou, Q. Yuan, J. Membr. Sci. 2007, 305 (1), 338–346. DOI: https://doi.org/10.1016/j.memsci.2007.08.024
- 56
L. Wang, Y. Cao, M. Zhou, X. Qiu, Q. Yuan, Front. Chem. China
2009, 4 (2), 215–221. DOI: https://doi.org/10.1007/s11458-009-0028-5
10.1007/s11458-009-0028-5 Google Scholar
- 57 P. Bahukudumbi, D. M. Ford, Ind. Eng. Chem. Res. 2006, 45 (16), 5640–5648. DOI: https://doi.org/10.1021/ie051366t
- 58 A. F. Ismail, W. Lorna, Sep. Purif. Technol. 2002, 27 (3), 173–194. DOI: https://doi.org/10.1016/S1383-5866(01)00211-8
- 59 Polymeric Gas Separation Membranes (Eds: R. E. Kesting, A. Fritzsche), Wiley-Interscience, New York 1993.
- 60 H. Mannan, D. Mohshim, H. Mukhtar, T. Murugesan, Z. Man, M. Bustam, J. Ind. Eng. Chem. 2017, 54, 98–106. DOI: https://doi.org/10.1016/j.jiec.2017.05.022
- 61 S. Li, G. Alvarado, R. D. Noble, J. L. Falconer, J. Membr. Sci. 2005, 251 (1), 59–66. DOI: https://doi.org/10.1016/j.memsci.2004.10.036
- 62 M. Othman, S. Tan, S. Bhatia, Microporous Mesoporous Mater. 2009, 121 (1), 138–144. DOI: https://doi.org/10.1016/j.micromeso.2009.01.019
- 63 W. Zhu, P. Hrabanek, L. Gora, F. Kapteijn, J. A. Moulijn, Ind. Eng. Chem. Res. 2006, 45 (2), 767–776. DOI: https://doi.org/10.1021/ie0507427
- 64 M. A. Carreon, S. Li, J. L. Falconer, R. D. Noble, J. Am. Chem. Soc. 2008, 130 (16), 5412–5413. DOI: https://doi.org/10.1021/ja801294f
- 65 S. Himeno, T. Tomita, K. Suzuki, K. Nakayama, K. Yajima, S. Yoshida, Ind. Eng. Chem. Res. 2007, 46 (21), 6989–6997. DOI: https://doi.org/10.1021/ie061682n
- 66 R. M. De Vos, H. Verweij, J. Membr. Sci. 1998, 143 (1), 37–51. DOI: https://doi.org/10.1016/S0376-7388(97)00334-7
- 67 M. Ogawa, Y. Nakano, J. Membr. Sci. 2000, 173 (1), 123–132. DOI: https://doi.org/10.1016/S0376-7388(00)00352-5
- 68 N. Raman, C. Brinker, J. Membr. Sci. 1995, 105 (3), 273–279. DOI: https://doi.org/10.1016/0376-7388(95)00067-M
- 69 M. Mubashir, Y. F. Yeong, K. K. Lau, J. Nat. Gas Sci. Eng. 2016, 30, 50–63. DOI: https://doi.org/10.1016/j.jngse.2016.01.015
- 70 S. Kulprathipanja, R. W. Neuzil, N. N. Li, 1988. US4740219A
- 71 S. G. E. Eltahir Mustafa, H. A. Mannan, R. Nasir, D. F. Mohshim, H. Mukhtar, J. Appl. Polym. Sci. 2017, 134 (39), 45346. DOI: https://doi.org/10.1002/app.45346
- 72 R. Nasir, H. Mukhtar, Z. Man, M. S. Shaharun, M. A. Bakar, Chem. Eng. Trans. 2015, 45, 1417–1422. DOI: https://doi.org/10.3303/CET1545237
- 73 N. N. R. Ahmad, H. Mukhtar, D. F. Mohshim, R. Nasir, Z. Man, Rev. Chem. Eng. 2016, 32 (2), 181–200.
- 74 S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Sep. Purif. Technol. 2012, 90, 162–172. DOI: https://doi.org/10.1016/j.seppur.2012.02.031
- 75 S. Rafiq, Z. Man, A. Maulud, N. Muhammad, S. Maitra, Adv. Mater. Res. 2012, 488–489, 506–510. DOI: https://doi.org/10.4028/www.scientific.net/AMR.488-489.506
- 76 S. Saqib, S. Rafiq, M. Chawla, M. Saeed, N. Muhammad, S. Khurram, K. Majeed, A. L. Khan, M. Ghauri, F. Jamil, Chem. Eng. Technol. 2019, 42 (1), 30–44. DOI: https://doi.org/10.1002/ceat.201700653
- 77 C. E. Powell, G. G. Qiao, J. Membr. Sci. 2006, 279 (1), 1–49. DOI: https://doi.org/10.1016/j.memsci.2005.12.062
- 78
R. Nasir, H. Mukhtar, M. S. Shaharun, Z. Man, Appl. Mech. Mater.
2015, 754, 869. DOI: https://doi.org/10.4028/www.scientific.net/AMM.754-755.869
10.4028/www.scientific.net/AMM.754-755.869 Google Scholar
- 79 S. Wickramanayake, D. Hopkinson, C. Myers, L. Hong, J. Feng, Y. Seol, D. Plasynski, M. Zeh, D. Luebke, J. Membr. Sci. 2014, 470, 52–59. DOI: https://doi.org/10.1016/j.memsci.2014.07.015
- 80
L. C. Branco, J. G. Crespo, C. A. Afonso, Chem. Eur. J.
2002, 8 (17), 3865–3871. DOI: https://doi.org/10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L
10.1002/1521-3765(20020902)8:17<3865::AID-CHEM3865>3.0.CO;2-L CAS PubMed Web of Science® Google Scholar
- 81 R. Kreiter, J. P. Overbeek, L. A. Correia, J. F. Vente, J. Membr. Sci. 2011, 370 (1), 175–178. DOI: https://doi.org/10.1016/j.memsci.2010.12.024
- 82 S. Barghi, M. Adibi, D. Rashtchian, J. Membr. Sci. 2010, 362 (1), 346–352. DOI: https://doi.org/10.1016/j.memsci.2010.06.047
- 83 E. Santos, J. Albo, A. Irabien, J. Membr. Sci. 2014, 452, 277–283. DOI: https://doi.org/10.1016/j.memsci.2013.10.024
- 84 J. C. Jansen, K. Friess, G. Clarizia, J. Schauer, P. Izak, Macromolecules 2010, 44 (1), 39–45. DOI: https://doi.org/10.1021/ma102438k
- 85 P. Scovazzo, D. Havard, M. McShea, S. Mixon, D. Morgan, J. Membr. Sci. 2009, 327 (1–2), 41–48. DOI: https://doi.org/10.1016/j.memsci.2008.10.056
- 86 A. B. Pereiro, L. C. Tomé, S. Martinho, L. P. N. Rebelo, I. M. Marrucho, Ind. Eng. Chem. Res. 2013, 52 (14), 4994–5001. DOI: https://doi.org/10.1021/ie4002469
- 87 L. C. Tomé, C. Florindo, C. S. Freire, L. P. N. Rebelo, I. M. Marrucho, PCCP 2014, 16 (32), 17172–17182. DOI: https://doi.org/10.1039/C4CP01434K
- 88 J. Grünauer, S. Shishatskiy, C. Abetz, V. Abetz, V. Filiz, J. Membr. Sci. 2015, 494, 224–233. DOI: https://doi.org/10.1016/j.memsci.2015.07.054
- 89 K. Halder, M. M. Khan, J. Grünauer, S. Shishatskiy, C. Abetz, V. Filiz, V. Abetz, J. Membr. Sci. 2017, 539, 368–382. DOI: https://doi.org/10.1016/j.memsci.2017.06.022
- 90 G. Guerrica-Echevarria, J. Eguiazabal, J. Nazabal, J. Appl. Polym. Sci. 2004, 92 (3), 1559–1561. DOI: https://doi.org/10.1002/app.20096
- 91 X. M. Wu, Q. G. Zhang, P. J. Lin, Y. Qu, A. M. Zhu, Q. L. Liu, J. Membr. Sci. 2015, 493, 147–155. DOI: https://doi.org/10.1016/j.memsci.2015.05.077
- 92 W. Yong, F. Li, Y. Xiao, P. Li, K. Pramoda, Y. Tong, T. Chung, J. Membr. Sci. 2012, 407, 47–57. DOI: https://doi.org/10.1016/j.memsci.2012.03.038
- 93 R. Ur Rehman, S. Rafiq, N. Muhammad, A. L. Khan, A. Ur Rehman, L. TingTing, M. Saeed, F. Jamil, M. Ghauri, X. Gu, J. Appl. Polym. Sci. 2017, 134 (44), 45395. DOI: https://doi.org/10.1002/app.45395
- 94 B. Lam, M. Wei, L. Zhu, S. Luo, R. Guo, A. Morisato, P. Alexandridis, H. Lin, Polymer 2016, 89, 1–11. DOI: https://doi.org/10.1002/app.45395
- 95 Y. Gu, T. P. Lodge, Macromolecules 2011, 44 (7), 1732–1736. DOI: https://doi.org/10.1021/ma2001838
- 96 H. Z. Chen, P. Li, T.-S. Chung, Int. J. Hydrogen Energy 2012, 37 (16), 11796–11804. DOI: https://doi.org/10.1016/j.ijhydene.2012.05.111
- 97 R. Nasir, N. N. R. Ahmad, H. Mukhtar, D. F. Mohshim, J. Environ. Chem. Eng. 2018, 6 (2), 2363–2368. DOI: https://doi.org//10.1016/j.jece.2018.03.032
- 98 D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem. 2013, 19 (2), 375–393. DOI: https://doi.org/10.1016/j.jiec.2012.09.019
- 99 Y. C. Hudiono, T. K. Carlisle, J. E. Bara, Y. Zhang, D. L. Gin, R. D. Noble, J. Membr. Sci. 2010, 350 (1), 117–123. DOI: https://doi.org/10.1016/j.memsci.2009.12.018
- 100 J. E. Bara, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2008, 47 (24), 9919–9924. DOI: https://doi.org/10.1021/ie801019x
- 101 Y. C. Hudiono, T. K. Carlisle, A. L. LaFrate, D. L. Gin, R. D. Noble, J. Membr. Sci. 2011, 370 (1), 141–148. DOI: https://doi.org/10.1016/j.memsci.2011.01.012
- 102 J. E. Bara, E. S. Hatakeyama, D. L. Gin, R. D. Noble, Polym. Adv. Technol. 2008, 19 (10), 1415–1420.
- 103 P. T. Nguyen, B. A. Voss, E. F. Wiesenauer, D. L. Gin, R. D. Noble, Ind. Eng. Chem. Res. 2012, 52 (26), 8812–8821. DOI: https://doi.org/10.1021/ie302352r
- 104 M. J. Muldoon, S. N. Aki, J. L. Anderson, J. K. Dixon, J. F. Brennecke, J. Phys. Chem. B 2007, 111 (30), 9001–9009. DOI: https://doi.org/10.1021/jp071897q
- 105 X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Energy Environ. Sci. 2012, 5 (5), 6668–6681. DOI: https://doi.org/10.1039/C2EE21152A
- 106 R. S. Bhavsar, S. C. Kumbharkar, U. K. Kharul, J. Membr. Sci. 2012, 389, 305–315. DOI: https://doi.org/10.1016/j.memsci.2011.10.042
- 107 C. Wang, X. Luo, H. Luo, D. E. Jiang, H. Li, S. Dai, Angew. Chem. Int. Ed. 2011, 50 (21), 4918–4922. DOI: https://doi.org/10.1002/anie.201008151
- 108 I. Cichowska-Kopczyńska et al., J. Chem. 2013, 2013, 980689. DOI: https://doi.org/10.1155/2013/980689
- 109 L. C. Tomé, D. J. Patinha, C. S. Freire, L. P. N. Rebelo, I. M. Marrucho, RSC Adv. 2013, 3 (30), 12220–12229. DOI: https://doi.org/10.1039/C3RA41269E
- 110 A. Mohamed, P. Krokidas, I. G. Economou, J. Comput. Sci. 2018, 27, 183–191. DOI: https://doi.org/10.1016/j.jocs.2018.05.010
- 111 A. N. V. Azar, S. Velioglu, S. Keskin, ACS Sustainable Chem. Eng. 2019, 7 (10), 9525. DOI: https://doi.org/10.1021/acssuschemeng.9b01020
- 112 H. Mannan, H. Mukhtar, T. Murugesan, Z. Man, M. Bustam, M. Shaharun, M. Abu Bakar, J. Appl. Polym. Sci. 2017, 134 (17), 44761. DOI: https://doi.org/10.1002/app.44761
- 113 D. F. Mohshim, H. Mukhtar, Z. Man, J. Appl. Polym. Sci. 2016, 133 (39), 43999. DOI: https://doi.org/10.1002/app.43999
- 114 T. H. Bae, J. S. Lee, W. Qiu, W. J. Koros, C. W. Jones, S. Nair, Angew. Chem. Int. Ed. 2010, 49 (51), 9863–9866. DOI: https://doi.org/10.1002/anie.201006141