Impact of Solute Properties and Water Matrix on Nanofiltration of Pesticides
Corresponding Author
Lian See Tan
Universiti Teknologi Malaysia, Department of Chemical Process Engineering, Malaysia – Japan International Institute of Technology, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
Correspondence: Lian See Tan ([email protected]), Universiti Teknologi Malaysia, Department of Chemical Process Engineering, Malaysia – Japan International Institute of Technology, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.Search for more papers by this authorAbdul Latif Ahmad
Universiti Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorSyamsul Rizal Abd Shukor
Universiti Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorSwee Pin Yeap
UCSI University, Chemical and Petroleum Engineering Department, Jalan Menara Gading 1, Taman Connaught, 56000 Kuala Lumpur, Malaysia
Search for more papers by this authorCorresponding Author
Lian See Tan
Universiti Teknologi Malaysia, Department of Chemical Process Engineering, Malaysia – Japan International Institute of Technology, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
Correspondence: Lian See Tan ([email protected]), Universiti Teknologi Malaysia, Department of Chemical Process Engineering, Malaysia – Japan International Institute of Technology, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.Search for more papers by this authorAbdul Latif Ahmad
Universiti Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorSyamsul Rizal Abd Shukor
Universiti Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
Search for more papers by this authorSwee Pin Yeap
UCSI University, Chemical and Petroleum Engineering Department, Jalan Menara Gading 1, Taman Connaught, 56000 Kuala Lumpur, Malaysia
Search for more papers by this authorAbstract
The application of different nanofiltration membranes for the separation of pesticides, i.e., atrazine and dimethoate, from aqueous solutions is described. The nanoflitration membranes DK, NF270, NF200, and NF90 were tested for the pesticide retention performance in a stirred dead-end filtration system. NF90 demonstrated the best pesticide retention with over 95 % for atrazine and approximately 80 % for dimethoate. All membranes consistently showed better retention of atrazine than of dimethoate. Dissolving the pesticides in river or tap water amplified the overall pesticide retention performance, indicating that filtration in water treatment plants could render superior pesticide retention. However, a lower flux was obtained for the filtration of tap and river water.
References
- 1 P. C. Abhilash, N. Singh, J. Hazard. Mater. 2009, 165 (1), 1–12. DOI: https://doi.org/10.1016/j.jhazmat.2008.10.061
- 2 D. J. Ecobichon, Toxicology 2001, 160 (1), 27–33. DOI: https://doi.org/10.1016/S0300-483X(00)00452-2
- 3
P. Chawla, R. Kaushik, V. J. Shiva Swaraj, N. Kumar, Environ. Nanotechnol. Monit. Manage.
2018, 10, 292–307. DOI: https://doi.org/10.1016/j.enmm.2018.07.013
10.1016/j.enmm.2018.07.013 Google Scholar
- 4 Q. A. Edwards, S. M. Kulikov, L. D. Garner-O'Neale, C. D. Metcalfe, T. Sultana, Environ. Monit. Assess. 2017, 189 (12), 636. DOI: https://doi.org/10.1007/s10661-017-6341-4
- 5 P. Westlund, V. Yargeau, Sci. Total Environ. 2017, 607–608 (Suppl. C), 744–751. DOI: https://doi.org/10.1016/j.scitotenv.2017.07.032
- 6 A. Buah-Kwofie, M. S. Humphries, L. Pillay, Sci. Total Environ. 2018, 621, 273–281. DOI: https://doi.org/10.1016/j.scitotenv.2017.11.212
- 7 J. Duan, Z. Cheng, J. Bi, Y. Xu, Food Chem. 2018, 245 (Suppl. C), 119–124. DOI: https://doi.org/10.1016/j.foodchem.2017.10.017
- 8 J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, A. M. T. Silva, J. Hazard. Mater. 2018, 344 (Suppl. C), 146–162. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.058
- 9 H. Hamsan, Y. B. Ho, S. Z. Zaidon, Z. Hashim, N. Saari, A. Karami, Sci. Total Environ. 2017, 603–604, 381–389. DOI: https://doi.org/10.1016/j.scitotenv.2017.06.096
- 10 J. M. Biernacka, S. J. Chung, S. M. Armasu, K. S. Anderson, C. M. Lill, L. Bertram, J. E. Ahlskog, L. Brighina, R. Frigerio, D. M. Maraganore, Parkinsonism Relat. Disord. 2016, 32, 25–30. DOI: https://doi.org/10.1016/j.parkreldis.2016.08.002
- 11 S. Gangemi, E. Miozzi, M. Teodoro, G. Briguglio, A. De Luca, C. Alibrando, I. Polito, M. Libra, Mol. Med. Rep. 2016, 14, 4475–4488.
- 12 A. Prüss-Ustün, C. Vickers, P. Haefliger, R. Bertollini, Environ. Health 2011, 10 (1), 9. DOI: https://doi.org/10.1186/1476-069x-10-9
- 13 A. M. Hidalgo, M. Gómez, M. D. Murcia, E. Gómez, G. León, E. Cascales, Chem. Eng. Technol. 2016, 39 (6), 1177–1184. DOI: https://doi.org/10.1002/ceat.201500254
- 14 G. H. Lopes, N. Ibaseta, P. Guichardon, P. Haldenwang, Chem. Eng. Technol. 2015, 38 (4), 585–594. DOI: https://doi.org/10.1002/ceat.201400654
- 15 N. García-Vaquero, E. Lee, R. Jiménez Castañeda, J. Cho, J. A. López-Ramírez, Desalination 2014, 347 (Suppl. C), 94–102. DOI: https://doi.org/10.1016/j.desal.2014.05.036
- 16 J. C. G. Sousa, A. R. Ribeiro, M. O. Barbosa, M. F. R. Pereira, A. M. T. Silva, J. Hazard. Mater. 2018, 344, 146–162. DOI: https://doi.org/10.1016/j.jhazmat.2017.09.058
- 17 M. Inoue-Choi, P. J. Weyer, R. R. Jones, B. J. Booth, K. P. Cantor, K. Robien, M. H. Ward, Occup. Environ. Med. 2016, 73 (9), 582.
- 18WHO, Guidelines for Drinking Water Quality, 4th ed., World Health Organization, Malta 2011.
- 19 W. Chu, K. H. Chan, C. Y. Kwan, K. Y. Choi, Chemosphere 2007, 67 (4), 755–761. DOI: https://doi.org/10.1016/j.chemosphere.2006.10.039
- 20 J. Li, J. Hu, W. Xu, M. Ling, J. Yao, J. Agric. Food. Chem. 2014, 62 (21), 4852–4863. DOI: https://doi.org/10.1021/jf501101q
- 21 V. Sivapiriya, Jayanthisakthisekaran, S. Venkatraman, Pestic. Biochem. Physiol. 2006, 85 (2), 115–121. DOI: https://doi.org/10.1016/j.pestbp.2005.12.001
- 22 H. Karimi, A. Rahimpour, M. R. Shirzad Kebria, Desalin. Water Treat. 2016, 57 (52), 24844–24854. DOI: https://doi.org/10.1080/19443994.2016.1156580
- 23 M. Saxena, H. Brahmbhatt, D. Anjali Devi, A. Bhattacharya, Desalin. Water Treat. 2015, 55 (3), 575–586. DOI: https://doi.org/10.1080/19443994.2014.919610
- 24 J. L. Acero, F. J. Benitez, F. Teva, A. I. Leal, Chem. Eng. J. 2010, 163 (3), 264–272. DOI: https://doi.org/10.1016/j.cej.2010.07.060
- 25 N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohammad, Desalination 2005, 177 (1), 187–199. DOI: https://doi.org/10.1016/j.desal.2004.12.008
- 26 Z. Kovács, W. Samhaber, Membrántechnika 2008, 12 (2), 22–36.
- 27 P. Xu, J. E. Drewes, T.-U. Kim, C. Bellona, G. Amy, J. Membr. Sci. 2006, 279 (1), 165–175. DOI: https://doi.org/10.1016/j.memsci.2005.12.001
- 28 C. Bellona, J. E. Drewes, J. Membr. Sci. 2005, 249 (1), 227–234. DOI: https://doi.org/10.1016/j.memsci.2004.09.041
- 29 L. D. Nghiem, P. J. Coleman, Sep. Purif. Technol. 2008, 62 (3), 709–716. DOI: https://doi.org/10.1016/j.seppur.2008.03.027
- 30 X. Su, Y. Song, T. Li, C. Gao, J. Water Process Eng. 2017, 19, 147–155. DOI: https://doi.org/10.1016/j.jwpe.2017.07.021
- 31 L. Braeken, R. Ramaekers, Y. Zhang, G. Maes, B. V. d. Bruggen, C. Vandecasteele, J. Membr. Sci. 2005, 252 (1), 195–203. DOI: https://doi.org/10.1016/j.memsci.2004.12.017
- 32 J. J. Torres, J. T. Arana, N. A. Ochoa, J. Marchese, C. Pagliero, Chem. Eng. Technol. 2018, 41 (2), 253–260. DOI: https://doi.org/10.1002/ceat.201600257
- 33 L. Flyborg, B. Björlenius, M. Ullner, K. M. Persson, Sep. Purif. Technol. 2017, 174, 212–221. DOI: https://doi.org/10.1016/j.seppur.2016.10.029
- 34
M. A. Kamrin, Pesticide Profiles: Toxicity, Environmental Impact, and Fate, CRC Press, Boca Raton, FL
1997.
10.1201/9781420049220 Google Scholar
- 35 T.-U. Kim, G. Amy, J. E. Drewes, Water Sci. Technol. 2005, 51, 335–344.
- 36 N. Rakhshan, M. Pakizeh, Sep. Purif. Technol. 2015, 147, 245–256. DOI: https://doi.org/10.1016/j.seppur.2015.04.013
- 37 B. Van der Bruggen, K. Everaert, D. Wilms, C. Vandecasteele, J. Membr. Sci. 2001, 193 (2), 239–248. DOI: https://doi.org/10.1016/S0376-7388(01)00517-8
- 38 J. Shirley, S. Mandale, V. Kochkodan, Desalination 2014, 344, 116–122. DOI: https://doi.org/10.1016/j.desal.2014.03.024
- 39 D. Van Gauwbergen, J. Baeyens, Sep. Purif. Technol. 1998, 13 (2), 117–128. DOI: https://doi.org/10.1016/S1383-5866(97)00065-8
- 40 Y. Kiso, Y. Nishimura, T. Kitao, K. Nishimura, J. Membr. Sci. 2000, 171 (2), 229–237. DOI: https://doi.org/10.1016/S0376-7388(00)00305-7
- 41 Y.-y. Zhao, F.-x. Kong, Z. Wang, H.-w. Yang, X.-m. Wang, Y. F. Xie, T. D. Waite, Front. Environ. Sci. Eng. 2017, 11 (6), 20. DOI: https://doi.org/10.1007/s11783-017-0975-x
- 42 K. Košutić, L. Furač, L. Sipos, B. Kunst, Sep. Purif. Technol. 2005, 42 (2), 137–144. DOI: https://doi.org/10.1016/j.seppur.2004.07.003
- 43 K. M. Agbekodo, B. Legube, S. Dard, Water Res. 1996, 30 (11), 2535–2542. DOI: https://doi.org/10.1016/S0043-1354(96)00128-5
- 44 L. Han, T. Xiao, Y. Z. Tan, A. G. Fane, J. W. Chew, J. Membr. Sci. 2017, 541, 291–299. DOI: https://doi.org/10.1016/j.memsci.2017.07.013
- 45 J. Garcia-Ivars, J. Durá-María, C. Moscardó-Carreño, C. Carbonell-Alcaina, M.-I. Alcaina-Miranda, M.-I. Iborra-Clar, Sep. Purif. Technol. 2017, 175, 58–71. DOI: https://doi.org/10.1016/j.seppur.2016.11.027
- 46 U. Mohd Amil, K. Imran, A. H. Bhat, S. P. Renjith, A. Naheed, M. K. M. Haafiz, O. Mohammad, Curr. Org. Synth. 2017, 14 (2), 206–226. DOI: https://doi.org/10.2174/1570179413666160928125328
- 47 Z. Chen, J. Luo, X. Hang, Y. Wan, J. Membr. Sci. 2018, 547, 51–63. DOI: https://doi.org/10.1016/j.memsci.2017.10.037