Effect of Silica Nanoparticles on the Performance of Polysulfone Membranes for Olefin-Paraffin Separation
Najme Gholamipour
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorCorresponding Author
Morteza Sadeghi
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Correspondence: Morteza Sadeghi ([email protected]), Isfahan University of Technology, Department of Chemical Engineering, Isfahan, 84156-83111, Iran.Search for more papers by this authorMohammadreza Shafiei
University of Texas at Austin, McKetta Department of Chemical Engineering, 200 East Dean Keeton, 78712 Austin, TX, USA
Search for more papers by this authorNajme Gholamipour
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Search for more papers by this authorCorresponding Author
Morteza Sadeghi
Isfahan University of Technology, Department of Chemical Engineering, 84156-83111 Isfahan, Iran
Correspondence: Morteza Sadeghi ([email protected]), Isfahan University of Technology, Department of Chemical Engineering, Isfahan, 84156-83111, Iran.Search for more papers by this authorMohammadreza Shafiei
University of Texas at Austin, McKetta Department of Chemical Engineering, 200 East Dean Keeton, 78712 Austin, TX, USA
Search for more papers by this authorAbstract
The separations of ethylene/ethane and propylene/propane using polysulfone-silica nanocomposite membranes were studied. Silica nanoparticles were prepared via sol-gel method and the membranes by phase inversion. Characterization by Fourier transform spectroscopy and scanning electron microscopy indicated a good distribution of silica nanoparticles in the polymer matrix and also a good compatibility between the two phases. The performances of the prepared membranes in ethylene-ethane and propylene-propane separation were evaluated. The results showed the increments in gas permeability and selectivity by silica. Higher silica contents increased the solubility coefficient and reduced the diffusion coefficient of gases. The plasticization pressure of polysulfone was increased by incorporating the silica nanoparticles in polymer.
References
- 1 P. Luis, T. V. Gerven, B. V. der Bruggen, Prog. Energy Combust. Sci. 2012, 38 (3), 419–448. DOI: https://doi.org/10.1016/j.pecs.2012.01.004
- 2 P. Luis, A. Garea, A. Irabien, Sep. Purif. Technol. 2010, 72 (2), 174–179. DOI: https://doi.org/10.1016/j.seppur.2010.02.003
- 3 S. M. Davoodi, M. Sadeghi, M. Naghsh, A. Moheb, RSC Adv. 2016, 6 (28), 23746–23759. DOI: https://doi.org/10.1039/C6RA00553E
- 4 W. J. Koros, G. K. Fleming, J. Membr. Sci. 2000, 83 (1), 1–80. DOI: https://doi.org/10.1016/0376-7388(93)80013-N
- 5
R. W. Baker, Membrane Technology and Applications, 2nd ed., John Wiley & Sons, Chichester
2004.
10.1002/0470020393 Google Scholar
- 6 M. Laghaei, M. Sadeghi, B. Ghalei, M. Shahrooz, J. Membr. Sci. 2016, 513, 20–32. DOI: https://doi.org/10.1016/j.memsci.2016.04.039
- 7 L. M. Robeson, J. Membr. Sci. 2008, 320 (1–2), 390–400. DOI: https://doi.org/10.1016/0376-7388(91)80060-J
- 8 L. M. Robeson, J. Membr. Sci. 1991, 62 (2), 165–185. DOI: https://doi.org/10.1016/0376-7388(91)80060-J
- 9 H. S. M. Suhaimi, M. Khir, C. P. Leo, A. L. Ahmad, J. Polym. Res. 2014, 21 (5), 428. DOI: https://doi.org/10.1007/s10965-014-0428-1
- 10 N. Ghaemi, P. Daraei, S. Palani, Chem. Eng. Technol. 2018, 41 (2), 261–269. DOI: https://doi.org/10.1002/ceat.201700124
- 11 M. Sadeghi, M. M. Talakesh, B. Ghalei, M. Shafiei, J. Membr. Sci. 2013, 427, 21–29. DOI: https://doi.org/10.1016/j.memsci.2012.07.036
- 12 G. M. Nisola, A. B. Beltran, D. M. Sim, D. Lee, B. Jung, W. J. Chung, J. Polym. Res. 2011, 18 (6), 2415–2424. DOI: https://doi.org/10.1007/s10965-011-9655-x
- 13 Y. Kong, H. Du, J. Yang, D. Shi, Y. Wang, Y. Zhang, W. Xin, Desalination 2002, 146 (1–3), 49–55. DOI: https://doi.org/10.1016/S0011-9164(02)00476-9
- 14 M. S. Suleman, K. K. Lau, Y. F. Yeong, Chem. Eng. Technol. 2016, 39 (9), 1604–1616. DOI: https://doi.org/10.1002/ceat.201500495
- 15 A. Higuchi, T. Agatsuma, S. Uemiya, T. Kojima, K. Mizoguchi, I. Pinnau, N. Kazukiyo, B. D. Freeman, J. Appl. Polym. Sci. 2000, 77 (3), 529–537. DOI: https://doi.org/10.1002/(SICI)1097-4628(20000718)77:3<529::AID-APP8>3.0.CO;2-Y
- 16 D. Bastani, N. Esmaeili, M. Asadollahi, J. Ind. Eng. Chem. 2013, 19 (2), 375–393. DOI: https://doi.org/10.1016/j.jiec.2012.09.019
- 17 I. Tirouni, M. Sadeghi, M. Pakizeh, Sep. Purif. Technol. 2015, 141, 394–402. DOI: https://doi.org/10.1016/j.seppur.2014.12.012
- 18 D. Q. Vu, W. J. Koros, S. J. Miller, J. Membr. Sci. 2003, 211 (2), 311–334. DOI: https://doi.org/10.1016/S0376-7388(02)00429-5
- 19 S. Zeinali, M. Aryaeinezhad, Chem. Eng. Technol. 2015, 38 (11), 2079–2086. DOI: https://doi.org/10.1002/ceat.201400538
- 20 B. Zornoza, A. Martinez-Joaristi, P. Serra-Crespo, C. Tellez, J. Coronas, J. Gascon, F. Kapteijn, Chem. Commun. 2011, 47 (33), 9522–9524. DOI: https://doi.org/10.1039/c1cc13431k
- 21 Q. Song, S. K. Nataraj, M. V. Roussenova, J. C. Tan, D. J. Hughes, W. Li, P. Bourgoin, M. A. Alam, A. K. Cheetham, S. A. Al-Muhtaseb, E. Sivaniah, Energy Environ. Sci. 2012, 5 (8), 8359–8369. DOI: https://doi.org/10.1039/c2ee21996d
- 22 B. D. Reid, F. A. Ruiz-Trevino, I. H. Musselman, K. J. Baslkus, J. P. Ferraris, Chem. Mater. 2001, 13 (7), 2366–2373. DOI: https://doi.org/10.1021/cm000931+
- 23 S. Kim, E. Marand, J. Ida, V. V. Guliants, Chem. Mater. 2006, 18 (5), 1149–1155. DOI: https://doi.org/10.1021/cm052305o
- 24 S. Kim, E. Marand, Microporous Mesoporous Mater. 2008, 114 (1–3), 129–136. DOI: https://doi.org/10.1016/j.micromeso.2007.12.028
- 25 A. Jomekian, M. Pakizeh, A. R. Shafiee, S. A. A. Mansoori, Sep. Purif. Technol. 2011, 80 (3), 556–565. DOI: https://doi.org/10.1016/j.seppur.2011.06.011
- 26 Y. Shen, A. C. Lua, Chem. Eng. J. 2012, 192, 201–210. DOI: https://doi.org/10.1016/j.cej.2012.03.066
- 27 M. Naghsh, M. Sadeghi, A. Moheb, M. P. Chenar, M. Mohagheghian, J. Membr. Sci. 2012, 423–424, 97–106. DOI: https://doi.org/10.1016/j.memsci.2012.07.032
- 28 C. Staudt-Bickel, W. J. Koros, J. Membr. Sci. 2000, 170 (2), 205–214. DOI: https://doi.org/10.1016/S0376-7388(99)00351-8
- 29 S. Sridhar, A. A. Khan, J. Membr. Sci. 1999, 159 (1–2), 209–219. DOI: https://doi.org/10.1016/S0376-7388(99)00061-7
- 30 K. Tanaka, A. Taguchi, J. Hao, H. Kita, K. Okamoto, J. Membr. Sci. 1996, 121 (2), 197–207. DOI: https://doi.org/10.1016/S0376-7388(96)00182-2
- 31 A. P. Isfahani, M. Sadeghi, A. H. S. Dehaghani, M. A. Aravand, J. Ind. Eng. Chem. 2016, 44, 67–72. DOI: https://doi.org/10.1016/j.jiec.2016.08.012
- 32 K. R. Lee, S. T. Hwang, J. Membr. Sci. 1992, 73 (1), 37–45. DOI: https://doi.org/10.1016/0376-7388(92)80184-L
- 33 A. Khosravi, M. Sadeghi, H. Z. Banadkohi, M. M. Talakesh, Ind. Eng. Chem. Res. 2014, 53 (5), 2011–2021. DOI: https://doi.org/10.1021/ie403322w
- 34 M. Khoshkam, M. Sadeghi, M. P. Chenar, M. Naghsh, M. Shafiei, RSC Adv. 2016, 6 (42), 35751–35763. DOI: https://doi.org/10.1039/c6ra04973g
- 35 K. Madhavan, D. Gnanasekaran, B. S. Reddy, J. Polym. Res. 2011, 18 (6), 1851–1861. DOI: https://doi.org/10.1007/s10965-011-9592-8
- 36 M. Sadeghi, M. A. Semsarzadeh, H. Moadel, J. Membr. Sci. 2009, 331 (1–2), 21–30. DOI: https://doi.org/10.1016/j.memsci.2008.12.073
- 37 D. G. Pye, H. H. Hoehn, M. Panar, J. Appl. Polym. Sci. 1976, 20 (7), 1921–1931. DOI: https://doi.org/10.1002/app.1976.070200719
- 38 The Analytical Chemistry of Silicones (Eds: A. L. Smith, I. M. Kolthoff), John Wiley & Sons, New York 1991.
- 39 S. S. Chan, T. S. Chung, Y. Liu, R. Wang, J. Membr. Sci. 2003, 218 (1–2), 235–245. DOI: https://doi.org/10.1016/S0376-7388(03)00180-7
- 40 A. Javaid, Chem. Eng. J. 2005, 112 (1–3), 219–226. DOI: https://doi.org/10.1016/j.cej.2005.07.010
- 41 W. H. Lin, T. S. Chung, J. Membr. Sci. 2001, 186 (2), 183–193. DOI: https://doi.org/10.1016/S0376-7388(01)00333-7
- 42 M. Sadeghi, G. Khanbabaei, A. H. S. Dehaghani, M. Sadeghi, M. A. Aravand, M. Akbarzadeh, S. Khatti, J. Membr. Sci. 2008, 322 (2), 423–428. DOI: https://doi.org/10.1016/j.memsci.2008.05.077
- 43 H. Sejour, Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA 2007.
- 44 S. I. Semenova, J. Membr. Sci. 2004, 231 (1–2), 189–207. DOI: https://doi.org/10.1016/j.memsci.2003.11.022
- 45 T. Visser, M. Wessling, J. Membr. Sci. 2008, 312 (1–2), 84–96. DOI: https://doi.org/10.1016/j.memsci.2007.12.035
- 46 D. R. Paul, W. J. Koros, J. Polym. Sci., Part B: Polym. Phys. 1976, 14 (4), 675–685. DOI: https://doi.org/10.1002/pol.1976.180140409;