Diffusion Studies of Glucose and Sucrose in Chitosan Membranes and Beads for Enzymatic Production Processes
Dave Hartig
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorSandra Hacke
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorLisanne Ott
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorJakub Gabrielczyk
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorClarissa Müller
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorHans-Joachim Jördening
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorCorresponding Author
Stephan Scholl
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Correspondence: Stephan Scholl ([email protected]), Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany.Search for more papers by this authorDave Hartig
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorSandra Hacke
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorLisanne Ott
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Search for more papers by this authorJakub Gabrielczyk
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorClarissa Müller
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorHans-Joachim Jördening
Technische Universität Braunschweig, Institute for Technical Chemistry, Gaußstrasse 17, 38106 Braunschweig, Germany
Search for more papers by this authorCorresponding Author
Stephan Scholl
Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany
Correspondence: Stephan Scholl ([email protected]), Technische Universität Braunschweig, Institute for Chemical and Thermal Process Engineering, Langer Kamp 7, 38106 Braunschweig, Germany.Search for more papers by this authorAbstract
The diffusion of glucose and sucrose was investigated in membrane and bead experiments. Concentration-dependent diffusion coefficients of pure glucose and sucrose were determined in precipitated chitosan membranes of varying thickness using diffusion cell experiments. Contrary to fructose, the resulting diffusion coefficients of glucose and sucrose did not reach their free diffusion coefficients at infinite dilution suggesting additional interactions between chitosan and these two sugars. Counter-diffusion in bead experiments showed a good agreement between predicted and measured data allowing the inclusion of the diffusion data in the simulation of the proposed production process for laminaribiose. In conclusion, the encapsulation in chitosan presented a good trade-off between increased mass transfer resistance as evaluated by the Thiele modulus and improved thermal stability and antibacterial activity.
Supporting Information
Filename | Description |
---|---|
ceat201800075-sup-0001-misc_information.pdf1.1 MB | Supplementary Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 K. Buchholz, V. Kasche, U. T. Bornscheuer, Biocatalysts and Enzyme Technology, 2nd ed., Wiley-Blackwell, Weinheim 2012.
- 2
H. Chmiel, Bioprozesstechnik, 3rd ed., Spektrum Akademischer Verlag, Heidelberg
2011.
10.1007/978-3-8274-2477-8 Google Scholar
- 3 P. de Oliva-Neto, P. T. P. Menao, Bioresour. Technol. 2009, 100 (18), 4252. DOI: 10.1016/j.biortech.2009.03.060
- 4 K. Buchholz, J. Seibel, Carbohydr. Res. 2008, 343 (12), 1966. DOI: 10.1016/j.carres.2008.02.007
- 5 T. Waluga, S. Scholl, Chem. Eng. Technol. 2015, 38 (10), 1817. DOI: 10.1002/ceat.201500166
- 6 C. Müller, D. Hartig, K. Vorländer, A.-C. Sass, S. Scholl, H.-J. Jördening, Bioprocess. Biosyst. Eng. 2017, 40 (9), 1399. DOI: 10.1007/s00449-017-1797-8
- 7 A. Abi, A. Wang, H.-J. Jördening, Appl. Biochem. Biotechnol. 2018, in press. DOI: 10.1007/s12010-018-2779-2
- 8 C. Müller, T. Ortmann, A. Abi, D. Hartig, S. Scholl, H.-J. Jördening, Appl. Biochem. Biotechnol. 2017, 182 (1), 197. DOI: 10.1007/s12010-016-2320-4
- 9 N. Jaiswal, V. P. Pandey, U. N. Dwivedi, Int. J. Biol. Macromol. 2016, 86, 288. DOI: 10.1016/j.ijbiomac.2016.01.079
- 10 H. No, Int. J. Food Microbiol. 2002, 74 (1–2), 65. DOI: 10.1016/S0168-1605(01)00717-6
- 11 S. Gabardo, R. Rech, M. A. Z. Ayub, J. Chem. Eng. Data 2011, 56 (5), 2305. DOI: 10.1021/je101288g
- 12 J. S. Vrentas, C. M. Vrentas, Macromolecules 1993, 26 (22), 6129.
- 13 B. A. Westrin, A. Axelsson, G. Zacchi, J. Control. Release 1994, 30 (3), 189. DOI: 10.1016/0168-3659(94)90025-6
- 14 S. Vasenkov, P. Galvosas, O. Geier, N. Nestle, F. Stallmach, J. Karger, J. Magn. Reson. 2001, 149 (2), 228. DOI: 10.1006/jmre.2001.2296
- 15 C. D'Agostino, J. Mitchell, L. F. Gladden, M. D. Mantle, J. Phys. Chem. C 2012, 116 (16), 8975. DOI: 10.1021/jp2123295
- 16 T. Waluga, S. Scholl, Chem. Eng. Technol. 2013, 36 (4), 681. DOI: 10.1002/ceat.201200522
- 17 D. Hartig, S. Hacke, S. Scholl, Chem. Eng. Technol. 2017, 100 (18), 4252. DOI: 10.1002/ceat.201600583
- 18 J. Crank, The Mathematics of Diffusion, 2nd ed., Clarendon Press, Oxford 1979.
- 19 E. L. Cussler, Diffusion Mass Transfer in Fluid Systems, 2nd ed., Cambridge University Press, Cambridge 2003.
- 20 B. A. Westrin, A. Axelsson, Biotechnol. Tech. 1991, 5 (4), 303. DOI: 10.1007/BF02438668
- 21 S. M. Ghaderi, S. H. Tabatabaie, H. Hassanzadeh, M. Pooladi-Darvish, Fluid Phase Equilib. 2011, 305 (2), 132. DOI: 10.1016/j.fluid.2011.03.010
- 22 F. J. P. Roman, S. H. Hejazi, Can. J. Chem. Eng. 2016, 94 (12), 2407. DOI: 10.1002/cjce.22606
- 23 Q. Yuan, X. Zhou, F. Zeng, K. D. Knorr, M. Imran, Chem. Eng. Sci. 2017, 172, 528. DOI: 10.1016/j.ces.2017.07.009
- 24 E. Glueckauf, Trans. Faraday Soc. 1955, 51, 1540. DOI: 10.1039/TF9555101540
- 25 H. Brauer, Chem. Ing. Tech. 1973, 45 (18), 1099. DOI: 10.1002/cite.330451803
- 26 D. J. Fink, T. Na, J. S. Schultz, Biotechnol. Bioeng. 1973, 15 (5), 879. DOI: 10.1002/bit.260150505
- 27 A. C. F. Ribeiro, O. Ortona, S. M. N. Simões, C. I. A. V. Santos, P. M. R. A. Prazeres, A. J. M. Valente, V. M. M. Lobo, H. D. Burrows, J. Chem. Eng. Data 2006, 51 (5), 1836. DOI: 10.1021/je0602061
- 28 C. Müller, Dissertation, Technische Universität, Braunschweig 2018.