Smart Metal-Organic Frameworks (MOFs): Switching Gas Permeation through MOF Membranes by External Stimuli
Alexander Knebel
Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany
Search for more papers by this authorChen Zhou
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorAisheng Huang
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorJian Zhang
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorLeonid Kustov
Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, 119991 Moscow, Russia
Search for more papers by this authorCorresponding Author
Juergen Caro
Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany
Correspondence: Juergen Caro ([email protected]), Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany.Search for more papers by this authorAlexander Knebel
Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany
Search for more papers by this authorChen Zhou
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorAisheng Huang
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorJian Zhang
Ningbo Institute of Materials Technology and Engineering, CAS, Institute of New Energy Technology, 1219 Zhongguan Road, 315201 Ningbo, China
Search for more papers by this authorLeonid Kustov
Russian Academy of Sciences, N. D. Zelinsky Institute of Organic Chemistry, Leninsky Prospect, 47, 119991 Moscow, Russia
Search for more papers by this authorCorresponding Author
Juergen Caro
Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany
Correspondence: Juergen Caro ([email protected]), Leibniz University Hannover, Institute for Physical Chemistry and Electrochemistry, Callinstrasse 3A, 30167 Hannover, Germany.Search for more papers by this authorAbstract
The switching of gas permeation and adsorption on polymers, zeolites, and metal-organic frameworks (MOFs) by external stimuli like temperature, pressure, light, and electric fields is discussed. Especially MOFs as soft porous crystals are suitable candidates for switching gas transport. If the linker of a MOF contains a cis-trans switchable azo moiety, switching of the trans state into the cis state reduces gas transport through a MOF membrane. On the other hand, MOFs with dipolar or ionic components can be switched upon polarization with an electric field into polymorphs of the starting MOF. A ZIF-8 membrane can be switched into a polymorph with a rather stiff lattice, which sharpens the molecular sieving effect of the membrane, and, as an example, the propene/propane selectivity increases.
References
- 1 M. A. C. Stuart, W. T. S. Huck, J. Genzer, M. Müller, C. Ober, M. Stamm, G. B. Sukhorukov, I. Szleifer, V. V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Nat. Mater. 2010, 9, 101–113. DOI: 10.1038/nmat2614
- 2 P. Schattling, F. D. Jochum, P. Theato, Polym. Chem. 2014, 5, 25–36. DOI: 10.1039/C3PY00880K
- 3 D. Wandera, S. R. Wickramasinghe, S. M. Husson, J. Membr. Sci. 2010, 357, 6–35. DOI: 10.1016/j.memsci.2010.03.046
- 4 J. Thevenot, H. Oliveira, O. Sandre, S. Lecommandoux, Chem Soc. Rev. 2013, 42, 7099–7166. DOI: 10.1039/C3CS60058K
- 5 Y. Zhao, Macromolecules 2012, 45, 3647–3657. DOI: 10.1021/ma300094t
- 6 D. Roy, W. L. Brooks, B. S. Sumerlin, Chem. Soc. Rev. 2013, 42, 7214–7243. DOI: 10.1039/c3cs35499g
- 7 J. J. Li, Y. N. Zhou, Z. H. Luo, Chem. Eng. J. 2017, 322, 693–701. DOI: 10.1016/j.cej.2017.04.074
- 8 S. Nasir, M. Ali, W. Ensiger, Nanotechnology 2012, 23, 225502. DOI: 10.1088/0957-4484/23/227225502
- 9 S. Hassan, R. Anandakathir, M. J. Sobkowicz, B. M. Budhlall, Polym. Chem. 2016, 7, 1452–1460. DOI: 10.1039/c5py01640a
- 10 Y. Takasaki, S. Takamizawa, Nat. Commun. 2015, 6, 8934. DOI: 10.1038/ncomms9934
- 11 O. Sato, Nat. Chem. 2016, 8, 644–656. DOI: 10.1038/NCHEM.2547
- 12 F.-X. Coudert, Chem. Mater. 2015, 27, 1905–1916. DOI: 10.1021/acs.chemmater.5b00046
- 13 S. S. Nagarkar, A. V. Desai, S. K. Ghosh, Chem. Asian J. 2014, 9, 2358–2376. DOI: 10.1002/asia.201402004
- 14 H. Sato, W. Kosaka, R. Matsuda, A. Hori, Y. Hijikata, R. V. Belosludov, S. Sakaki, M. Takat, S. Kitagawa, Science 2014, 343, 167–170. DOI: 10.1126/science.1246423
- 15 S. Shimomura, M. Higuchi, R. Matsuda, K. Yoneda, Y. Hijikata, Y. Kubota, Y. Mita, J. Kim, M. Takata, S. Kitagawa, Nat. Chem. 2010, 2, 633–637. DOI: 10.1038/nchem.684
- 16 J. Nishida, A. Tamimi, H. Fei, S. Pullen, S. Ott, S. M. Cohen, M. D. Fayer, PNAS 2014, 111, 18442–18447. DOI: 10.1073/pnas.1422194112
- 17 V. Stavila, A. A. Talin, M. D. Allendorf, Chem. Soc. Rev. 2014, 43, 5994–6010. DOI: 10.1039/c4cs00096
- 18 L. E. Kreno, K. Leong, O. K. Farha, M. Allendorf, R. P. Van Duyne, J. T. Hupp, Chem. Rev. 2012, 112, 1105–1125. DOI: 10.1021/cr200324t
- 19 F.-Y. Yi, D. Chen, M.-K. Wu, L. Han, H.-L. Jiang, ChemPlusChem 2016, 81, 675–690. DOI: 10.1002/cplu.201600137
- 20 P. Yot, L. Vanduyfhuys, E. Alvarez, J. Rodriguez, J.-P. Itié, P. Fabry, N. Guillou, T. Devic, I. Beurroies, P. L. Llewellyn, V. Van Speybroeck, C. Serre, G. Maurin, Chem. Sci. 2016, 7, 446–450. DOI: 10.1039/C5SC02794B
- 21 S. M. J. Rogge, L. Vanduyfhuys, A. Ghysels, M. Waroquier, T. Verstraelen, G. Maurin, V. Van Speybroeck, J. Chem. Theory Comput. 2015, 11, 5583–5597. DOI: 10.1021/acs.jctc.5b00748
- 22 Y. Liu, J.-H. Her, A. Dailly, A. J. Ramirez-Cuesta, D. A. Neumann, C. M. Brown, J. Am. Chem. Soc. 2008, 130, 11813–11818. DOI: 10.1021/ja803669w
- 23 L. Vanduyfhuys, A. Ghysels, S. M. J. Rogge, R. Demuynck, V. Van Speybroeck, Mol. Simul. 2015, 41, 1311–1328. DOI: 10.1080/08927022.2015.1048512
- 24 S. Kitagawa, R. Kitaura, S.-I. Noro, Angew. Chem., Int. Ed. 2004, 43, 2334–2375. DOI: 10.1002/anie.200300610.
- 25 G. Férey, C. Serre, Chem. Soc. Rev. 2009, 38, 1380–1399. DOI: 10.1039/B804302G
- 26 S. Horike, S. Shimomura, S. Kitagawa, Nat. Chem. 2009, 1, 695–704. DOI: 10.1038/NCHEM.444
- 27 A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel, R. A. Fischer, Chem. Soc. Rev. 2014, 43, 6062–6096. DOI: 10.1039/c4cs00101j
- 28 D. Fairen–Jimenez, S. A. Moggach, M. T. Wharmby, P. A. Wright, S. Parsons, T. Düren, J. Am. Chem. Soc. 2011, 133, 8900–8902. DOI: 10.1021/ja202154j
- 29 S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F.-X. Coudert, S. Kaskel, Nature 2016, 532, 348–352. DOI: 10.1038/nature17430
- 30 F. Leysser, S. Hagen, L. Ovari, J. Dokic, P. Saalfrank, M. V. Peters, S. Hecht, T. Klamroth, P. Tegeder, J. Phys. Chem. C 2010, 114, 1231–1239. DOI: 10.1021/jp909684x
- 31 S. Sasaki, G. P. C. Drummen, G. Konishi, J. Mater. Chem. C 2016, 4, 2731–2743. DOI: 10.1039/c5tc03933a
- 32 Y. Yan, M. E. Mariott, C. Petchprayoon, G. Mariott, Biochem. J. 2011, 433, 411–422. DOI: 10.1042/BJ20100992
- 33 Z. Wang, S. Grosjean, S. Bräse, L. Heinke, ChemPhysChem 2015, 16, 3779–3783. DOI: 10.1002/cphc.201500829
- 34 A. Modrow, D. Zargarani, R. Herges, N. Stock, Dalton Trans. 2012, 41, 8690–8696. DOI: 10.1039/C2DT30672G
- 35 J. Park, D. Q. Yuan, K. T. Pham, J. R. Li, A. Yakovenko, H. C. Zhou, J. Am. Chem. Soc. 2012, 134, 99–102. DOI: 10.1021/ja209197f
- 36 B. J. Furlong, M. J. Katz, J. Am. Chem. Soc. 2017, 139, 13280–13283. DOI: 10.1021/jacs.7b07856.
- 37 C. B. Fan, Z. Q. Liu, L. L. Gong, A. M. Zheng, L. Zhang, C. S. Yan, H. Q. Wu, X. F. Feng, F. Luo, Chem. Commun. 2017, 4, 763–766. DOI: 10.1039/C6CC08982H
- 38 W. An, D. Aulakh, X. Zhang, W. Verdegaal, K. R. Dunbar, M. Wriedt, Chem. Mater. 2016, 28, 7825–7832. DOI: 10.1021/acs.chemmater.6b03224
- 39
K. Weh, M. Noack, R. Ruhmann, K. Hoffmann, P. Toussaint, J. Caro, Chem. Eng. Technol.
1998, 5, 408–412.
10.1002/(SICI)1521-4125(199805)21:5<408::AID-CEAT408>3.0.CO;2-L Google Scholar
- 40 K. Weh, M. Noack, K. Hoffmann, K.-P. Schröder, J. Caro, Microporous Mesoporous Mater. 2002, 54, 15–26.
- 41 A. Knebel, L. Sundermann, A. Mohmeyer, I. Strauß, S. Friebe, P. Behrens, J. Caro, Chem. Mater. 2017, 29, 3111–3117. DOI: 10.1021/acs.chemmater.7b00147
- 42 K. Hoffmann, F. Marlow, J. Caro, J. Fluoresc. 1994, 4, 75–77.
- 43 S. Castellanos, F. Kapteijn, J. Gascon, CrystEngComm 2016, 18, 4006–4012. DOI: 10.1039/c5ce02543e
- 44 R. Lyndon, K. Konstas, B. P. Ladewig, P. D. Southon, C. J. Kepert, M. R. Hill, Angew. Chem., Int. Ed. 2013, 52, 3695–3698. DOI: 10.1002/anie.201206359
- 45 A. B. Kanj, K. Müller, L. Heinke, Macromol. Rapid Commun. 2018, 39, 1700239. DOI: 10.1002/marc.201700239
- 46 Z. Wang, A. Knebel, S. Grosejean, D. Wagner, S. Bräse, C. Wöll, J. Caro, L. Heinke, Nat. Commun. 2017, 7, 13872. DOI: 10.1038/ncomms13827
- 47 H. Rau, in Photochemistry and Photophysics (Eds: J. F. Rabek, G. W. Scott), CRC Press, Boca Raton, FL 1990, Vol. 4, 120–141.
- 48 H. Huang, H. Sato, T. Aida, J. Am. Chem. Soc. 2017, 139, 8784–8787. DOI: 10.1021/jacs.7b02979
- 49 Z. Wang, L. Heinke, J. Jelik, M. Cakici, M. Dommaschk, R. J. Maurer, H. Oberhofer, S. Grosejean, R. Herges, S. Bräse, K. Reuter, C. Wöll, Phys. Chem. Chem. Phys. 2015, 17, 14582–14587. DOI: 10.1039/c5cp01372k
- 50 J.-R. Li, R. J. Kuppler, H.-C. Zhou, Chem. Soc. Rev. 2009, 38, 1477–1504. DOI: 10.1039/b802426j
- 51 K. Müller, A. Knebel, F. Zhao, D. Bleger, J. Caro, L. Heinke, Chem. – Eur. J. 2017, 23, 5434–5438. DOI: 10.1002/chem.201700989
- 52 C. A. Fernandez, P. C. Martin, T. Schaef, M. E. Bowden, P. K. Thallapally, L. Dang, W. Xu, X. Chen, P. McGrail, Sci. Rep. 2014, 4, 6114. DOI: 10.1038/srep06114
- 53 Z. M. Ao, A. D. Hernandez–Nieves, F. M. Peeters, S. Li, Phys. Chem. Chem. Phys. 2012, 14, 1463–1467. DOI: 10.1039/c1cp23153g
- 54 W. Liu, Y. H. Zhao, Y. Li, E. J. Lavernia, Q. Jiang, Phys. Chem. Chem. Phys. 2009, 11, 9233–9240. DOI: 10.1039/B907591G
- 55 B. Tam, O. Yazaydin, J. Mater. Chem. A 2017, 5, 8690–8696. DOI: 10.1039/c7ta00101k
- 56 P. Jain, A. Stroppa, D. Nabok, A. Marino, A. Rubano, D. Paparo, M. Matsubara, H. Nakotte, M. Fiebig, S. Picozzi, E. S. Choi, A. K. Cheetham, C. Draxl, N. S. Dalal, V. S. Zapf, npj Quantum Mater. 2016, 1, 16012. DOI: 10.1038/npjquantmats.2016.12
- 57 A. Ghoufi, K. Benhamed, L. Boukli-Hacene, G. Maurin, ACS Cent. Sci. 2017, 3, 394–398. DOI: 10.1021/acscentsci.6b00392
- 58 R. Schmid, ACS Cent. Sci. 2017, 3, 369–371. DOI: 10.1021/acscentsci.7b00162
- 59 K. Titov, Z. Zheng, M. R. Ryder, A. K. Chaudhari, B. Civalleri, C. S. Kelley, M. D. Frogley, G. Cinque, J.-C. Tan, J. Phys. Chem. Lett. 2017, 8, 5035–5040. DOI: 10.1021/acs.ipclett.7b02003
- 60 B. Tam, O. Yazaydin, J. Mater. Chem. A 2017, 5, 8690–8696. DOI: 10.1039/c7ta00101k
- 61 A. Knebel, B. Geppert, K. Volgmann, D. I. Kolokolov, A. G. Stepanov, J. Twiefel, P. Heitjans, D. Volkmer, J. Caro, Science 2017, 358, 347–351. DOI: 10.1126/science.aal2456
- 62 H. T. Kwon, H.-K. Jeong, Chem. Commun. 2013, 49, 3854–3856. DOI: 10.1039/c3cc41039k
- 63 M. Shah, H. T. Kwon, V. Tran, S. Sachdeva, H.-K. Jeong, Microporous Mesoporous Mater. 2013, 165, 63–69. DOI: 10.1016/j.micromeso.2012.07.046
- 64 F.-X. Coudert, ChemPhysChem 2017, 18, 2732–2738. DOI: 10.1002/cphc.201700463
- 65 T. Akutagawa, T. Akutagawa, H. Koshinaka, D. Sato, S. Takeda, S.-I. Noro, H. Takahashi, R. Kumai, Y. Tokura, T. Nakamura, Nat. Mater. 2009, 8, 342–347. DOI: 10.1038/nmat2377